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CHAPTER 1. GENERAL INTRODUCTION 

 

 

1.1 Overview  

Interest in the development of a U.S. cellulosic biofuel industry has been motivated by the 

concepts of energy security and independence, rural development opportunities, and environmental 

benefits associated with substituting biofuel for fossil fuels. Current policy support for industry 

development includes both market-based incentives and mandates.  

The 2008 Farm Bill established market-based incentives in the form of subsidies to biomass 

suppliers and a tax credit to cellulosic biofuel processors. Further, the revised Renewable Fuel 

Standard (RFS2) outlined in the 2007 Energy Independence and Security Act mandates the use of 

increasing volumes of cellulosic biofuel between 2010 and 2022.  

Despite policy incentives, the industry has been slow to develop. Cellulosic biofuel 

production is currently limited to research labs and pilot plants. Without a commercial-scale biomass 

supply system or cellulosic biorefinery, knowledge is limited regarding the costs and environmental 

impacts of cellulosic biofuel production at the scale needed to meet current and future mandate levels.  

For this reason, economists and environmentalists have been tasked with evaluating potential 

economic and environmental implications of biofuel expansion.
1
 Yet, understanding the economic 

implications of biofuel expansion first requires an understanding of the economics of cellulosic 

biofuel production. The objective of my dissertation is to provide a better understanding of the 

economics of cellulosic biofuel production and identify important economic trade-offs that will be 

encountered in the development of a cellulosic biofuel industry.  

                                                      
1
 For example, the National Research Council (NRC, 2011) commissioned the Committee on Economic and 

Environmental Impacts of Increasing Biofuels Production to evaluate the potential economic and environmental 

effects of U.S. biofuel policy with focus on the RFS2 mandates.  
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1.2 Dissertation organization 

 The dissertation is organized into three main chapters. Chapter 2 provides a general 

introduction to cellulosic biofuel. A historical account of the biofuel industry details events that led to 

former and current policy support. A brief overview of first-generation biofuels is accompanied by a 

discussion of the shift towards second-generation biofuels, including cellulosic biofuel. Potential 

cellulosic biofuel feedstocks are identified along with the potential contribution from biomass to the 

energy sector. The chapter concludes with the current status of second-generation technology and a 

discussion of challenges facing industry development. 

Although each chapter can be read independently as these are largely self-contained, Chapter 

2 provides useful background information for the model formulation and empirical analysis in 

Chapters 3 and 4.  

Chapter 3 considers the economics of cellulosic biofuel production. Breakeven models of the 

local feedstock supply system and biofuel refining process are constructed to develop the Biofuel 

Breakeven (BioBreak) program. BioBreak is a stochastic, Excel-based program that evaluates the 

feasibility of local biofuel and biomass markets under various policy and market scenarios. Program 

results indicate whether a cellulosic biofuel market is economically sustainable, and if not, provides 

market conditions needed to sustain the local market.  

An application of the BioBreak program is presented using expected market conditions for 14 

local cellulosic biofuel markets that vary by feedstock and location. For the 14 markets considered, 

long-run cellulosic ethanol production is not sustainable without significant policies to support the 

industry or long-run oil prices of $135 – $170 per barrel. The economic costs of biofuel production 

identified from the BioBreak application are higher than frequently anticipated
2
 and raise questions 

                                                      
2
A subset of the literature that falls within this category includes: Aden (2008), Aden et al. (2002), Brechbill & 

Tyner (2008a), Brechbill & Tyner (2008b), de La Torre Ugarte et al. (2003),Epplin & Haque (2011), Epplin et 

al. (2007), Graham et al. (2007), Huang et al. (2009), Khanna & Dhungana (2007), Mapemba et al. (2007),  

Mapemba et al. (2008), McLaughlin et al. (2002), McLaughlin et al. (2006), Perlack & Turhollow (2002), 
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about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional 

fuels.  

Chapter 3 concludes by extending BioBreak program results using life-cycle analysis to 

derive the per unit cost of carbon savings from substituting cellulosic ethanol for conventional 

transportation fuel. This carbon price represents the value of reduced emissions implied by 

government intervention in the cellulosic ethanol industry, such as the RFS2 mandates. Based on 

current market conditions, policies that sustain cellulosic ethanol production are found to value a 

reduction in carbon equivalents between $141 and $280 per metric ton, higher than most carbon tax 

rates or prices discussed in the literature.
3
 

Chapter 4 evaluates the economic trade-offs in commercial-scale cellulosic biofuel 

production that result from spatial variation in potential biomass supply, including landowner 

behavior. A long-run biomass production through bioenergy conversion cost model is developed that 

incorporates heterogeneity of biomass suppliers within and between local markets. The model builds 

on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common 

assumption of fixed biomass density and price within local markets. 

An empirical application is provided for U.S. switchgrass-based ethanol. A unique dataset of 

offers to enroll in the Conservation Reserve Program (CRP) are used to identify revealed opportunity 

cost of potential biomass cropland within local markets. Cost-minimizing biofuel production 

decisions – including biorefinery size, biomass transportation distance, and price of biomass – are 

found to vary significantly across locations. Local biofuel supply estimates are used to evaluate 

economic trade-offs in biofuel expansion, as well as the potential for and costs to meet the RFS2 

cellulosic biofuel mandates. Empirical results indicate spatial variation in the economics of biomass 

                                                                                                                                                                     
Perlack & Turhollow (2003), Petrolia (2008), Popp & Hogan (2007), Sheehan et al. (2004), Vadas et al. (2008), 

and Wallace et al. (2005).  
3
See Baker et al. (2010), Brechbill & Tyner (2008b), de la Torre Ugarte et al. (2009), EPA (2006), Gomes & 

Araujo (2009), Johnson (2006), Khanna (2008), Murray et al. (2005), Parry & Small (2005), and Updegraff, 

Baughman, & Taff (2004). 
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production plays an important role in the potential supply and distribution of U.S. cellulosic biofuel 

production, and assuming fixed local biomass supply conditions leads to an over- or under-estimate of 

potential biofuel supply.   
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CHAPTER 2. CELLULOSIC BIOFUEL: AN OVERVIEW OF THE POLICIES, 

POTENTIAL, AND CHALLENGES 

 
“Advanced biofuels are a key component of President Obama’s ‘all-of-the-above’ energy strategy to 

limit the impact of foreign oil on our economy and take control of our energy future.” 

- U.S. Agriculture Secretary Tom Vilsack (USDA, 2012) 

 

2.1 Introduction 

In the wake of unstable energy prices and rising environmental concerns, biofuels as an 

alternative transportation fuel has drawn considerable attention. While interest has grown in recent 

years, the idea of biofuel as an alternative transportation fuel is not new. This chapter begins with a 

historical account of the biofuel industry focusing on the events that led to former and current policy 

support. Next, a brief overview of first-generation biofuels is accompanied by a discussion of the shift 

towards second-generation biofuels including cellulosic biofuel. Potential cellulosic feedstocks are 

identified along with the potential contribution from biomass to the energy sector. These discussions 

are followed by an overview of the current status of second-generation technology. The chapter 

concludes with a discussion of policy uncertainty and other challenges facing the cellulosic biofuel 

industry.  

2.2 Historical background 

The concept of ethanol as an alternative transportation fuel dates back to the 1800s. Earlier 

inventors such as Samuel Morey and Nicholas Otto experimented with the use of ethanol for internal 

combustion engines,
4
 but it was Henry Ford’s Model T in 1908 that revolutionized the use of ethanol 

as a transportation fuel. Considered the first affordable automobile, the Ford Model T contained a 

flexible-fuel engine capable of running on pure ethanol, gasoline, or a combination referred to as 

                                                      
4
 Samuel Morey developed an engine capable of running on ethanol and turpentine in 1826. Nicholas Otto used 

ethanol to fuel one of his engines in 1860 (U.S. EIA, 2008b). 
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gasohol (Model T, 2012; Solomon, Barnes, & Halvorsen, 2007).
5
 Henry Ford was well known for his 

outspoken support for farm- and waste-based fuels. He provided his biofuel vision in a 1925 New 

York Times interview (Ford Predicts Fuel from Vegetation, 1925):  

“The fuel of the future is going to come from fruit like that sumac out by the road, or from 

apples, weeds, sawdust – almost anything. There is fuel in every bit of vegetable matter that 

can be fermented. There's enough alcohol in one year's yield of an acre of potatoes to drive 

the machinery necessary to cultivate the fields for a hundred years.”  

The ability of ethanol to provide a homegrown, renewable substitute for petroleum-based fuel wasn’t 

its only attractive characteristic. Ethanol is an anti-knock agent or octane enhancer and provides 

improved engine operation even at low blend levels.  

Fuel demand during World War I boosted the U.S. ethanol industry to 50 – 60 million gallons 

per year (mgy) (U.S. EIA, 2008). Despite prohibition and discovery of tetraethyl lead as an alternative 

and less expensive anti-knock agent, the industry survived the 1920s and 1930s. Ethanol’s 

competitiveness with lead-based gasoline was aided during the mid-1930s by lower corn prices 

(DiPardo, 2000; Solomon, Barnes, & Halvorsen, 2007). Increased fuel demand during the Second 

World War helped maintain ethanol demand even though most ethanol was allocated to non-war 

activities. Following World War II, the use and interest in ethanol faded. New oil discoveries 

provided an abundant supply of cheap leaded gasoline and reduced pressure to find petroleum 

substitutes (Solomon, Barnes, & Halvorsen, 2007). Between the late 1940s and late 1970s, 

commercial ethanol production was effectively non-existent in the United States.  

Rapid growth in energy demand diminished the abundant supply of cheap petroleum-based 

fuels by the early 1970s. Between 1970 and 1973, the market price of oil doubled and oil shortages 

appeared in many industrialized countries, including the United States (Duffield, Xiarchos, & 

Halbrook, 2008). A worldwide energy crisis was triggered in October 1973 as the Arab members of 

                                                      
5
 Henry Ford’s first vehicle, the Ford Quadricycle, also featured an ethanol-powered engine (Goettemoeller & 

Goettemoeller, 2007; Doeden, 2007). 
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OPEC
6
 tightened oil supplies and embargoed the United States. Lines formed at refueling stations 

across the United States and retail prices increased forty percent (Duffield, Xiarchos, & Halbrook, 

2008). The embargo was lifted in March 1974 and oil supplies were quickly restored. The relief was 

temporary. A second energy crisis developed in late 1978 as the Iranian Revolution disrupted world 

oil supplies. With the events of the first energy crisis still fresh in memory, widespread panic buying 

led to the return of long lines at refueling stations and a thirty percent increase in the retail price of 

gasoline (Duffield, Xiarchos, & Halbrook, 2008). The energy crises of the 1970s revealed the United 

States’ growing dependence on foreign oil and renewed interest in finding alternatives for petroleum-

based fuels. 

Around the same time, environmental concerns emerged over the use of lead-based additives 

in gasoline (DiPardo, 2000). In 1973, the Environmental Protection Agency (EPA) announced a 

required phase-out of lead in all grades of gasoline (U.S. EPA, 1973). Demand for alternative 

gasoline additives increased, but ethanol was not the primary additive used during this time period. 

Methyl tertiary butyl ether (MTBE) dominated most oxygenated gasoline markets until the mid-1990s 

due to better blending characteristics and lower costs (U.S. EPA, 2008; Solomon, Barnes, & 

Halvorsen, 2007). Ethanol was largely limited to Midwest markets where transportation from the 

production facility to final use was relatively low (DiPardo, 2000).  

The first U.S. ethanol subsidy program began in 1978 through the Energy Tax Act. The 

Energy Tax Act established a federal excise tax exemption equivalent to $0.40 for every gallon of 

blended ethanol. Several states followed suit by exempting ethanol from state-level gasoline excise 

taxes (DiPardo, 2000). The 1978 Energy Tax Act also introduced the first official definition of 

gasohol as any blend of gasoline with at least 10 percent non-fossil fuel-based ethanol by volume. 

Ethanol production in the United States, which was virtually non-existent 10 years prior, responded to 

                                                      
6
 Organization of Petroleum Exporting Countries 
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increased demand and policymakers’ incentives and reached almost 175 million gallons by 1980 

(RFA, 2012).  

A series of policies enacted by Congress in the early 1980s helped accelerate industry growth. 

Congress’ support for biofuels during this time period is nicely summarized in the 1980 Energy 

Security Act
7
: 

 “The Congress finds that –  

(1) the dependence of the United States on imported petroleum and natural gas must 

be reduced by all economically and environmentally feasible means, including 

the use of biomass energy resources; and  

(2) a national program for increased production and use of biomass energy that does 

not impair the Nation’s ability to produce food and fiber on a sustainable basis 

for domestic and export use must be formulated and implemented within a 

multiple-use framework.” 

In keeping with these findings, the 1980 Energy Security Act outlined price guarantees for biomass 

energy projects and offered small ethanol producers, classified as producers of less than 1 mgy, up to 

$1 million in loan guarantees. Further, Congress passed the Gasohol Competition Act of 1980 to 

prohibit discrimination by oil companies against the sale of gasohol.
8
 The Crude Windfall Tax Act of 

1980 extended the excise tax credit of $0.40 per gallon ethanol volume, and subsequently increased to 

$0.50 and then to $0.60 per gallon of blended ethanol in 1982
9
 and 1984

10
, respectively. To avoid 

subsidizing foreign ethanol suppliers, Congress placed an offsetting tax (i.e., tariff) on imported 

ethanol. These policy incentives, together with high oil prices during the First Persian Gulf War, 

prompted investment in the ethanol industry during the early 1980s.  

Production plateaued in the mid-1980s as oil prices returned to their pre-shock levels (see 

Figure 2.1). Despite subsidization, only 74 of the 163 ethanol plants constructed (45%) remained in 

                                                      
7
These findings are outlined within the Biomass Energy and Alcohol Fuels Act of 1980, one of six acts within 

the 1980 Energy Security Act.  
8
The Gasohol Competition Act of 1980 is an amendment to the Clayton Act.  

9
 Surface Transportation Assistance Act of 1982. 

10
Tax Reform Act of 1984. 
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operation by the end of 1985 (U.S. EIA, 2008b). In 1988, the Alternative Motor Fuels Act 

incentivized the production of flexible fuel vehicles by providing vehicle manufacturers Corporate 

Average Fuel Economy (CAFE) credits (U.S. EPA, 2011).
11

 The Alternative Motor Fuels Act had 

little effect on actual biofuel use since few retailers at this time offered E85. The policy faced 

criticism as a way for automakers to avoid CAFE requirements (Solomon, Barnes, & Halvorsen, 

2007; Duffield, Xiarchos, & Halbrook, 2008). 

Figure 2.1 – U.S. ethanol production 

(1980 – 2011) 

 
Source: RFA. Historic U.S. fuel Ethanol Production. http://www.ethanolrfa.org/pages/statistics 

In 1990, the ethanol tax credit was lowered to $0.54 per gallon of ethanol
12

 – the value at 

which the credit would remain until 2001. Small ethanol producers, redefined as less than 30 mgy, 

benefited from an additional tax credit of $0.10 per gallon for the first 15 million gallons. The passage 

of the Clean Air Act Amendments (CAAA) in 1990 provided indirect support for the ethanol 

industry. Oxygenated fuel use was required for certain areas during winter months to reduce carbon 

monoxide emissions. Although ethanol was typically more expensive than MTBE, ethanol’s higher 

                                                      
11

 Since 1975, vehicle manufactures have been required to meet minimum CAFE requirements based on a 

weighted average of the EPA fuel-efficiency ratings for its vehicles (Crandall, 1992). 
12

 Omnibus Budget Reconciliation Act of 1990.  
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oxygen content relative to MTBE allowed ethanol to compete during winter months in oxygenate 

markets outside the Midwest (DiPardo, 2000).  

Formal definitions for alternative fuel and alternative fuel vehicles were introduced in the 

Energy Policy Act of 1992 (EPAct 1992). Based on these definitions, federal and state vehicle fleets 

were required to contain at least 75% alternative fuel vehicles (U.S. EPA, 2011). An ethanol blend 

with at least 85 percent ethanol (E85) classified as an alternative fuel.
13

 The EPAct 1992 provided tax 

deductions for consumer purchases of alternative fuel vehicles or vehicles made compatible with 

alternative fuels such as E85. The ethanol industry also achieved an important milestone in 1992 as 

production surpassed 1 billion gallons.  

Despite previous investments and political support, industry survival was threatened in the 

mid-1990s as petroleum prices remained low and weak harvests escalated corn prices. State-level 

policies, particularly in the Midwest, helped sustain the struggling industry (Solomon, Barnes, & 

Halvorsen, 2007). Industry growth faltered in 1996 as production returned to 1992 levels. The setback 

was only temporary and the industry experienced continual growth for the subsequent 15 years (see 

Figure 2.1).  

Ethanol demand expanded in the late 1990s and early 2000s as the gasoline additive MTBE 

faced environmental and health concerns. Traces of MTBE were found in groundwater supplies, 

prompting the EPA to issue a Drinking Water Advisory in December 1997. The EPA’s 

recommendation in 2000 of a four-year national phase-out, along with state-level bans on MTBE use, 

increased demand for ethanol as a gasoline additive. By 2005, 25 states had adopted plans to partially 

or completely ban MTBE (U.S. EPA, 2007). The phase-out in 2004 and 2005 provided a significant 

boost for the ethanol industry (Babcock & Fabiosa, 2011).  

                                                      
13

 The official minimum blend requirement to qualify as an alternative fuel based on the EPAct 1992 is as 

follows: “mixtures containing 85 percent or more (or such other percentage, but not less than 70 percent, as 

determined by the Secretary, by rule, to provide for requirements relating to cold start, safety, or vehicle 

functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels.”  
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To reduce MTBE use, the Energy Policy Act of 2005 (EPAct 2005) eliminated the 1990 

CAAA oxygenated fuel requirements (Solomon, Barnes, & Halvorsen, 2007; Duffield, Xiarchos, & 

Halbrook, 2008). This policy change had a minor impact on the ethanol industry compared to the 

introduction of the first Renewable Fuels Standard (RFS), also part of the EPAct 2005. The RFS 

required increasing annual volumes of renewable fuels to be blended with the U.S. transportation fuel 

supply between 2006 and 2012. The RFS required 7.5 billion gallons per year (bgy) by 2012, almost 

double the 4 billion gallons mandated for 2006. The primary biofuel used during this time period, and 

the biofuel projected to satisfy the majority of the RFS, was corn-based ethanol. The EPAct 2005 also 

modified the definition of ‘small ethanol producer’ from 30 to 60 mgy.  

In 2007, the Energy Independence and Security Act (EISA) introduced a revised Renewable 

Fuels Standard (RFS2). The RFS2 expanded the RFS to include diesel, raised the annual renewable 

fuel requirements with increasing volumes up to 36 bgy by 2022, established subcategories of 

renewable fuels with separate sub-mandates, and required minimum greenhouse gas (GHG) reduction 

standards for each subcategory relative to 2005 gasoline or diesel (U.S. EPA, 2012). Given the 

significance of the RFS2, a more detailed description is provided in Box 2.1. 

Box 2.1 – Revised Renewable Fuel Standard (RFS2) 

The revised Renewable Fuels Standard (RFS2) outlined in the Energy Independence and Security 

Act of 2007 (EISA) mandates minimum blend volumes for conventional biofuel (i.e., corn ethanol) 

and advanced biofuel. The advanced biofuel mandate is subcategorized into cellulosic biofuel, 

biomass-based diesel, and undifferentiated advanced biofuel (see Table 2.1) (U.S. Congress, 2007). 

Figure 2.2 illustrates the breakdown of the RFS2 between conventional and advanced biofuel. Figure 

2.3 shows the subcategory mandates that comprise the advanced biofuel mandate.  

Beyond volume standards, each type of biofuel must satisfy a minimum GHG reduction standard, 

or low carbon fuel standard, relative to 2005 gasoline or diesel. Conventional biofuel from facilities 

built after December 19, 2007 must achieve a 20% GHG reduction. The conventional biofuel mandate 

is 13.2 billion gallons in 2012 and increases until 2015 when the mandate plateaus at 15 bgy through 

2022. The cellulosic biofuel volume requirement increases from 100 million gallons in 2010 to 16 

billion gallons in 2022 and must achieve at least 60% GHG reductions. One billion gallons of biomass-

based diesel with at least a 50% GHG reduction is required for 2012. Biodiesel mandates for 2013 – 

2022 are to be determined by the EPA but no less than 1 bgy. An additional 4 bgy of undifferentiated 

advanced biofuel, or any renewable fuel other than corn ethanol with at least 50% GHG reductions, is 
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mandated for 2022 (U.S. EPA, 2010). If cellulosic biofuels are the most economical advanced biofuel, 

the cellulosic biofuel blending requirement could reach 20 billion gallons in 2022; 16 to meet the 

cellulosic biofuel mandate and 4 to meet the advanced biofuel mandate. Biodiesel and imported sugar-

cane are other options to meet the undifferentiated advanced biofuel mandate as long as they meet the 

GHG reduction criterion.  

Table 2.1: EISA RFS2 volume requirements (bgy) 

Year Conventional  

biofuel 

Advanced biofuel Total RFS2 

Cellulosic biofuel Biodiesel Undifferentiated 

2008 9 -- -- -- 9 

2009 10.5 -- 0.50 0.1 11.1 

2010 12 0.1 0.65 0.2 12.95 

2011 12.6 0.25 0.8 0.3 13.95 

2012 13.2 0.5 1 0.5 15.2 

2013 13.8 1 --
a 

1.75
b 

16.55 

2014 14.4 1.75 -- 2 18.15 

2015 15 3 -- 2.5 20.5 

2016 15 4.25 -- 3 22.25 

2017 15 5.5 -- 3.5 24 

2018 15 7 -- 4 26 

2019 15 8.5 -- 4.5 28 

2020 15 10.5 -- 4.5 30 

2021 15 13.5 -- 4.5 33 

2022 15 16 -- 5 36 

Source: U.S. EPA (2010c) 
a
Biodiesel levels between 2013 and 2022 to be determined by EPA but no less than 1.0 bgy. 

b 
The undifferentiated volume requirements for 2013 – 2022 include the minimum 1.0 bgy of biodiesel. 

Figure 2.2 – RFS2 mandates 

 

Source: U.S. EPA (2010c) 
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Figure 2.3 – RFS2 advanced biofuel sub-mandates 

 
Source: U.S. EPA (2010c) 

To monitor biofuel production, each gallon of renewable fuel has a category-specific renewable 

identification number (RIN) and obligated parties must provide RINs to satisfy their minimum blend 

requirements. Obligated parties consist of registered importers or refiners for gasoline or diesel. RINs 

can be acquired from production of renewable fuels or purchased from the RIN trading market. The 

trading market allows low-cost producers to produce above their blend requirements and sell excess 

RINs to obligated parties with relatively high production costs. Since a commercial scale cellulosic 

biorefinery does not exist, a cellulosic biofuel RIN market is currently non-existent (McPhail, 

Westcott, & Lutman, 2011). 

Although the RFS2 provides explicit annual mandate quantities, revisions are allowed to prevent 

costly investment. The EPA conducts an annual evaluation of the cellulosic biofuel industry and the 

EPA Administrator waives a portion of cellulosic biofuel standards if deemed necessary. For example, 

the RFS2 required 500 million gallons of cellulosic biofuel production in 2012, but the EPA lowered 

the 2012 volume standard to 10.45 million ethanol equivalent gallons given industry projections (U.S. 

EPA, 2012a). Figure 2.4 shows the difference between the original and revised cellulosic biofuel 

mandates for 2010, 2011, and 2012.  

When a portion of the cellulosic biofuel mandate is waived, the EPA is required to make cellulosic 

waiver credits available for purchase by obligated parties. Waiver credits can be used to meet the 

revised mandated volumes in lieu of blending cellulosic biofuel. Waiver credits are priced at the 

maximum of “(i). $0.25 per cellulosic biofuel waiver credit, adjusted for inflation in comparison to 

calendar year 2008; or (ii) $3.00 less the wholesale price of gasoline per cellulosic biofuel waiver 
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credit, adjusted for inflation in comparison to calendar year 2008” (U.S. EPA, 2010b, p. 14892). The 

wholesale price of gasoline is determined by the average refiner’s monthly bulk sale price over the 

previous 12 months as of September 30 prior to the compliance year. Waiver credits were available for 

$1.56 per gallon in 2010 and $1.13 per gallon in 2011 (U.S. EPA, 2010a; 2010b). The 2012 waiver 

credit price is significantly lower at $0.78 per gallon (U.S. EPA, 2012a). 

Figure 2.4 – RFS2 original vs. revised cellulosic biofuel mandates (2010 – 2012) 

 

Source: U.S. EPA (2010a, 2010b,2012a) 

 The Food, Conservation, and Energy Act of 2008, commonly known as the 2008 Farm Bill, 

extended many of the programs authorized in previous legislation. Eleven programs were established 

for renewable energy, biobased products, and bioenergy including grants, loans, and loan guarantees 

for biorefineries (U.S. DOE, 2011b). Unlike previous legislation, the 2008 Farm Bill provided 

financial incentives specific to second generation or cellulosic biofuel production. Cellulosic biofuel 

producers qualify for a $1.01 per gallon tax credit. Biomass suppliers benefit from two means of 

assistance provided by the Biomass Crop Assistance Program (BCAP): 1) dollar-for-dollar matching 

payments for collection, harvest, storage, and transportation up to $45 per ton of feedstock and 2) up 

to 75% reimbursement for costs of perennial crop establishment (USDA - FSA, 2011).  

 Less than a year after the implementation of the 2008 Farm Bill, the American Reinvestment 

and Recovery Act of 2009 (Recovery Act) provided additional funding to support fundamental 
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bioenergy research and the development of pilot, demonstration, and commercial-scale biorefineries. 

Locations and general categories for Recovery Act projects as of March 2010 are shown in Figure 

2.5.  

Figure 2.5 – Recovery Act projects as of March 2010 

 
Source: US Department of Energy (2010).  

While policy support for second generation biofuels expanded, the federal tax credit for 

conventional ethanol underwent several changes and reductions starting in 1990. The Omnibus 

Budget Reconciliation Act of 1990 reduced the tax credit from $0.60 per gallon to $0.54 per gallon of 

ethanol. In 1998, the Transportation Efficiency Act of the 21
st
 Century extended the ethanol tax credit 

through 2007 but stipulated gradual reductions from $0.54 to $0.51 per gallon by 2005.
14

 The 

American Job Creation Act of 2004 extended the tax credit out to 2010 but changed the structure 

from an excise tax exemption to a blender’s tax credit. More commonly referred to as the “blender’s 

                                                      
14

 The tax credit was reduced to $0.53 per gallon in 2001 and $0.52 per gallon in 2003.  
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credit,” the Volumetric Ethanol Excise Tax Credit (VEETC) maintained the subsidy value at $0.51 

per gallon. The 2008 Farm Bill, which introduced new incentives for cellulosic biofuel production 

(i.e., producer tax credit and BCAP), lowered incentives for conventional biofuel by reducing the 

VEETC to $0.45 per gallon.  

The year 2011 was historic for the ethanol industry. After three decades of continued support, 

the Senate voted to repeal the ethanol tax credit (VEETC) on June 16. Congress let the tax credit and 

corresponding tariff expire December 31. In total, tax credit programs for conventional ethanol 

provided roughly $20 billion of support to the ethanol industry over the 30-year period.  

Appendix A.1 provides a summary timeline of the U.S. federal ethanol policies. Although not 

addressed in this chapter, state-level policies also had important implications on industry growth. 

Detailed discussions of state-level ethanol policies are provided by Duffield, Xiarchos, & Halbrook 

(2008), FAPRI (2008), Kesan & Ohyama (2011).  

2.3 Biofuel policy drivers 

As evidenced in the previous section, government support for biofuels has a long history. 

What has motivated such strong government intervention in the biofuel industry and have these 

motivations changed over time? The primary policy drivers in the early stage of industry development 

were energy independence and agricultural support (Tyner W. , 2011). After the CAAA of 1990, air 

quality benefits of biofuel relative to conventional fuels became increasingly relevant. Tyner (2011) 

and Solomon, Barnes, & Halvorsen (2007) argue the primary objectives of current support are energy 

security and GHG emissions reductions. This argument is consistent with recent statements from the 

U.S. Department of Energy (DOE): “growing concerns over national energy security and climate 

change have renewed the urgency for developing sustainable biofuels, bioproducts, and biopower” 

(U.S. DOE, 2011a, p. 1).  
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Although priorities have shifted over time, the three most commonly mentioned motivations 

for biofuel support include:  

1) energy independence from or reduced dependence on imported petroleum  

2) rural economic development opportunities provided by biofuel expansion  

3) potential environmental benefits associated with substituting biofuel for fossil fuels  

Each of these motivations is considered in more detail in the following subsections.  

2.3.1 Energy independence and security 

The U.S. transportation sector is heavily reliant on petroleum-based fuels (see Figure 2.6). 

Between 1960 and 2010, petroleum provided approximately 96% of the energy consumed within the 

transportation sector. Over this same time frame, decreases in domestic petroleum production coupled 

with increased transportation demand led to greater dependence on foreign oil. Figure 2.7 illustrates 

the increase in net petroleum imports as a share of total petroleum consumption between 1960 and 

2010. In 1960, net imports constituted 16.5% of U.S. petroleum consumption. This share has 

experienced gradual increase over time, with the exception of a spike in the mid-to-late 1970s. After 

peaking at 60% in 2005, the share of imports has gradually fallen to around 50% in 2010. This fall in 

the share of petroleum imports coincides with the period of rapid expansion in the use of biomass 

(including corn) as a transportation fuel source (see Figure 2.6). Consequently, the ability of biofuels 

to reduce reliance on imported energy, especially from unstable and unfriendly national governments, 

has been suggested as a way to improve national security, economic health, and future global 

competitiveness (U.S. DOE, 2011a). 
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Figure 2.6 – Fuel source as a percent of energy consumption in the U.S. transportation sector  
(1949-2010) 

 
Source: Annual Energy Review (U.S. EIA, 2011). Table 2.1e – Transportation Sector Energy 

Consumption Estimates (1949-2010).  

 

Figure 2.7 – U.S. net petroleum imports as share of total petroleum consumption 
(1960 – 2010) 

 
Source: Annual Energy Review (U.S. EIA, 2011). Table 5.7- Petroleum Net Imports by Country of 

Origin, 1960-2010.  
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The dependence of the transportation sector on petroleum-based fuels also has consequences 

for energy prices. Any price volatility in the petroleum market will be experienced in the 

transportation fuel market and, although to a lesser extent, markets for other energy sources. Figure 

2.8 shows the path of U.S. crude oil and gasoline prices between January 2008 and January 2012. 

Projected prices through 2013 are also provided. The price of gasoline traces along the price of crude 

oil, maintaining a price difference around $1.00 per gallon. The prevalent short-run fluctuations in oil 

price have translated into prevalent short-run fluctuations in transportation fuel price. 

Figure 2.8 – U.S. gasoline and crude oil prices (2008 – 2013) 

 
Note: Crude oil price is average refiner acquisition cost. Retail prices include State and Federal taxes.  

Source: U.S. EIA (2012b). Short-Term Energy Outlook, March 2012  

Volatility in the price of oil is not a recent or short-run phenomenon. Figure 2.9 shows the 

average annual world oil price between 1980 and 2011 along with three oil price forecasts out to 

2030. The volatility of the real oil price has been rather persistent over the long-run. This uncertainty 

underlies the large difference between the high and low oil price projections. For example, the 2035 

high oil price forecast is $201 per barrel while the low oil price forecast is $62 per barrel. Both the 
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reference and high oil price scenarios anticipate a significant rise in the price of oil between 2011 and 

2035 – a 55% increase in the reference scenario and 115% increase in the high cost scenario.  

Figure 2.9 – Average annual world real oil price with three price projections, 1980 – 2035 

 
Source: U.S. EIA (2012a). AEO2012 Early Release Overview – Figure 5. 

Rising and more volatile energy prices, including the oil price shock of 2008, have 

encouraged arguments from biofuel proponents. In particular, that biofuels would provide a substitute 

for petroleum-based transportation fuels, thereby increasing competition in the transportation fuel 

market. Increased competition has the potential to reduce long-run energy prices as well as alleviate 

severity of short-run price fluctuations.  

2.3.2 Agricultural and rural economy support 

Ethanol production benefits the agricultural sector through increased feedstock demand and 

higher commodity prices (Tyner, 2011; Duffield, Xiarchos, & Halbrook, 2008). Rural economies can 

further benefit from increased land values and job opportunities. The generation of off-farm work 

may help offset recent increases in rural migration and unemployment (Lambert, Wilcox, English, & 

Stewart, 2008). Yet, Swenson (2006) finds that previously high, positive rural impacts attributed to 

corn-ethanol production likely overstated the actual impacts through generous multiplier effect 
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assumptions or failure to account for shifting labor and resources. Further, Miranowski et al. (2008) 

suggest economic gains for rural areas may be limited due to competition for land and biomass 

between livestock feed, food, and biofuel feedstock. 

2.3.3 Climate change and environmental concerns 

The U.S. transportation sector is responsible for approximately one-third of U.S. carbon 

dioxide (CO2) emissions (U.S. DOE, 2011a). Biofuels not only provide a renewable energy source 

but have potential to lower transportation-related GHG-emissions.
15

 Figure 2.10 shows estimates of 

the reduction in GHG emissions relative to gasoline. The impact of corn-grain ethanol relative to 

gasoline ranges from a 3% increase in emissions with a coal-operated refinery to a 52% reduction if 

wood chips are the process fuel. Cellulosic ethanol is expected to provided higher GHG emissions 

reductions. For example, switchgrass-based ethanol is estimated to reduce GHG emissions by 86% 

relative to gasoline (Wang, Wu, & Huo, 2007).  

Figure 2.10 – Ethanol GHG emissions reductions 

 
Source: Wang (2007). Slide 19. GREET model estimates.  

                                                      
15

 Disagreement exists regarding the GHG-emissions impact of biofuels. Searchinger et al. (2008) argued 

indirect land use change from large scale biofuel production would create a carbon debt that would take up to 

167 years to offset. Matthews & Tan (2009, p. 305) evaluate the validity of the assumptions used by 

Searchinger et al. and suggest “land use change effects are too diffuse and subject to too many arbitrary 

assumptions to be useful for rule-making.”  



www.manaraa.com

22 

 

 

2.4 First-generation biofuels and transition to second-generation biofuels 

First-generation biofuels refer to biofuels derived from sugar-, oil-, or starch-based sources. 

The majority of first-generation biofuel produced in the United States is corn-based ethanol, also 

referred to as conventional biofuel. Corn ethanol can be produced using a wet- or dry-mill process.
16

 

A wet-mill refinery has the flexibility to produce a variety of final products beyond ethanol including 

starch, corn syrup, Splenda, etc. The flexibility to shift between final products allows the refinery to 

be more responsive to market conditions (Dale & Tyner, 2006). A dry-mill refinery does not have the 

final product flexibility of a wet-mill, but benefits from lower construction and operating costs and 

greater efficiency at turning corn into ethanol (Dale & Tyner, 2006; Feng, Rubin, & Babcock, 2008).  

Wet-mill refineries dominated U.S. ethanol production prior to 2000. A shift towards dry-mill 

processing began in the early 2000s as the price of ethanol rose with increased biofuel demand. In 

2010, 87% of corn ethanol production used a dry-mill process (Feng, Rubin, & Babcock, 2008). Dry-

mill production has a valuable co-product called distillers grains with solubles. Distillers grain 

contains the fiber, protein, vegetable oil, and minerals left after the starch components have been 

removed to produce ethanol.
17

 Approximately one-third of the original corn weight is returned in 

distillers grain (U.S. DOE, 2011b).  

As of January 2012, the total U.S. capacity for corn ethanol was 14.6 billion gallons (RFA, 

2012b; RFA, 2012a). Therefore, current capacity is available to meet or exceed the 2012 RFS2 

conventional biofuel mandate of 13.2 billion gallons. An additional 130 million gallons of capacity 

from current construction and expansion projects will push the industry above 15 billion gallons – the 

level at which the conventional mandate plateaus in 2015. Approximately one-third of the U.S. annual 

corn production is expected to be used for ethanol production through 2020 (U.S. DOE, 2011b). 

                                                      
16

 Detailed descriptions of corn-ethanol production processes are available in Brown (2003), Bothast & 

Schlicher (2005), and Kwaitkowski et al. (2006). 
17

 Livestock can be fed distillers grain in either a wet or dried form (U.S. DOE, 2011b). Although dried 

distillers grain with solubles (DDGS) incurs an additional drying cost, it can be stored for longer periods of time 

and is more convenient and economical to transport than wet distillers grain with solubles (WDGS). 
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Rapid growth in the corn ethanol industry was not without its critics. Rosillo-Calle & 

Tschirley (2010, p. 8) consolidate the criticisms of first-generation biofuel into three major dilemmas:  

“(1) whether biofuel production and use lead to – or imply – a choice between food and fuel;  

(2) whether biofuels have positive or negative effects for climate change and the broader 

environment; and  

(3) whether biofuels contribute to social-economic development, wealth generation and 

distribution.”  

The ‘food-versus-fuel’ debate is the most publicized criticism of first-generation biofuels. 

The debate centers on the use of food crops as biofuel feedstocks. This is not a new debate. The 

Brazilian alcohol program, implemented in 1975, faced similar criticism over sugar-based alcohol 

(Rosillo-Calle & Hall, 1987). The debate over corn-based ethanol escalated in 2007 and 2008 as 

agricultural commodity prices spiked, leading to what some referred to as a global food crisis. 

Although several factors contributed to the rise in commodity prices, U.S. ethanol policies were 

attacked for incentivizing the use of large quantities of food crops for fuel.
18

 Rising food prices led 

some countries, such as China, to stop or reduce programs that support biofuel from food crops 

(Sorda, Banse, & Kemfert, 2010).  

The food-versus-fuel debate, coupled with other concerns, raised question to the ability of 

first-generation biofuels to provide a long-run alternative for fossil fuels (Lardon, Helias, Sialve, 

Steyer, & Bernard, 2009). Attention and interest began to turn towards ‘second-generation’ or 

biomass-based biofuels. The Energy Security Act of 1980 defines biomass as: “any organic matter 

which is available on a renewable basis, including agricultural wastes and residues, wood and wood 

wastes and residues, animal wastes, municipal wastes, and aquatic plants” (U.S. DOE, 2009).
19

 The 

                                                      
18

 Babcock & Fabiosa (2011) decomposed the cause of the corn price increase between 2006 and 2009. Corn 

ethanol expansion from both market forces and subsidies was found to account for 36% of the increase in corn 

prices. The remaining 64% was attributed to other market forces. 
19

 Riedy & Stone (2010) provide a comparison of biomass definitions in legislation. Recent statutes and tax 

codes contain 16 different biomass definitions.  
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most commonly mentioned second-generation biofuel is cellulosic biofuel. Cellulosic biofuel is 

biofuel derived from the structural material of plants such as wood, grasses, and crop residues. 

Cellulosic biofuels avoid, or at least assuage, some of the issues faced by first generation biofuels. 

Relative to first-generation biofuels, second-generation biofuels are expected to be more water-

efficient, require less arable land, and provide higher net energy balances and GHG emissions 

benefits (Schenk, et al., 2008; Wang, Wu, & Huo, 2007). Samuel Bodman, former U.S. Energy 

Department Secretary, acknowledged the importance of the transition to second-generation biofuel in 

a 2008 speech (Bodman, 2008):  

“So, as we pursue diversity in our overall energy mix we must also pursue diversity in our 

biofuels. This means moving away gradually from ethanol produced from food stocks like 

corn. Let me be clear: I am not minimizing the importance of ethanol made from corn - it is 

critical to our energy security and America’s farmers make an important contribution to our 

energy security. But what I am saying is that we need to develop and deploy the next 

generation of ethanol - ethanol and other products made from biomass products that are 

outside the food chain. In my view, this means cellulosic fuels made from agricultural waste 

products and crops like switchgrass, which can be grown and regenerated on less desirable 

lands.” 

The next section provides an overview of potential biomass feedstocks for second-generation 

biofuel along with the economic and environmental challenges of commercial scale production.  

2.5 Alternative biomass sources  

Biomass is separated into 2 major categories: wastes and dedicated energy crops. A material 

is classified as waste if it has no value or is a nuisance to the local environment. Alternatively, plants 

grown intentionally for production of bio-based products are called dedicated energy crops (Brown, 

2003). Table 2.2 breaks down the classification of biomass resources and provides examples for each 

type.
20

   

                                                      
20

 The process of converting biorenewable resources into ethanol will vary based on the type of feedstock. 

Appendix A.2 provides descriptions for some of the possible methods for biomass-to-ethanol conversion. The 

appendix is not a comprehensive list of possible methods, but describes the approaches and limitations of the 

most widely accepted processes. Refer to Brown (2003), Kaylen et al. (2000), or Hamelinck et al. (2005) for a 

more detailed overview.  
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Table 2.2 – Biomass resource classification 

Biomass resource Examples 

Wastes  

Agricultural residue corn stover, rice hulls, wheat straw, 

bagasse, grapevine prunings, almond shells 

Yard waste grass clippings, leaves, tree trimmings 

Food processing waste cereal processing, brewery waste 

Manure  

Municipal solid waste (MSW) garbage 

Dedicated Energy Crops  

Oil-based^ soybeans, nuts, grains 

Sugar-based^ sugar beets, sorghum, sugar cane 

Starch-based^ corn, cereal crops 

Lignocellulosic   

Herbaceous energy crops (HEC)  

Thick-stemmed grasses sugarcane, sorghum 

Thin-stemmed grasses 

Cool-season 

Warm-season 

 

fescue, reed canary grass 

switchgrass, big bluestem 

Short-rotation woody crops (SRWC)  

Hardwoods willow, oak, poplar 

Softwoods pine, spruce, cedar 

Source: Adapted from Brown (2003) 

^Considered first-generation biofuel sources 

Waste material 

Categories of waste material include agricultural residue, yard waste, food processing waste, 

manure, and municipal solid waste. Agricultural residues are the portion of the plant not collected 

during harvest. Examples of agricultural residue include corn stover, rice hulls, wheat straw, bagasse, 

grapevine prunings, and almond shells. Yard waste consists of grass clippings, leaves, and tree 

trimmings. A major disadvantage of yard waste is seasonal variation. Supply and consistency will 

vary depending on the season, typically dry during the fall and wet during the spring. Food processing 

waste consists of waste matter from a variety of industries. Since production processes within these 

industries do not change frequently, consistency in composition and supply is an advantage. Yet, food 

processing wastes tend to contain materials and chemicals that complicate conversion. Municipal 

solid waste (MSW) is everything thrown in the garbage, but only a fraction of this waste is a viable 

energy source. MSW is easily accessible but inconsistent composition and supply make it an 

unreliable feedstock source (Brown, 2003).  
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One potential advantage of waste materials is cost. For most wastes, the major costs include 

collection, transportation, and storage. Some waste material can even be obtained at negative or zero 

costs. For example, people pay to dispose of landfill waste. Wheat producers also occasionally pay to 

burn wheat straw in order to avoid grain planting problems during the following crop season. These 

cost advantages of waste feedstocks make these some of the most attractive resources for the biofuel 

industry (Brown, 2003).  

A potential exception to this low-cost argument is crop residues such as corn stover. The 

economic and environmental impacts from residue removal have caused debate. Uncollected residue 

has value to the soil through protection against rain, wind, and radiation, thereby limiting erosion. 

Erosion results in the loss of organic-matter-rich topsoil, which diminishes soil quality and 

subsequent crop yields (Wilhlem, Johnson, Hatfield, Voorhees, & Linden, 2004).
21

 Unharvested crop 

residues also replenish soil organic carbon, which is reduced as a result of crop production activities. 

Recent evidence suggests the amount of residue needed to maintain soil organic carbon is a greater 

constraint than residue needed to control water and wind erosion (Wilhelm, Johnson, Karlen, & 

Lightle, 2007). 

Demand for crop residues as biofuel feedstocks creates a trade-off for potential biomass 

suppliers. If harvested, residue provides an immediate economic return. If left unharvested, residue 

may provide soil and water benefits for future crop production (Karlen D. , 2010). Landowners must 

consider the long-run impacts of residue removal. Sustainable residue removal will vary based on the 

crop, soil type, and soil properties. Standard production practices for residue management currently 

do not exist but a model such as the Revised Universal Soil Loss Equation (RUSLE2) is 

recommended for guidance (Andrews & Aschmann, 2006). General guidelines may develop in the 

future as the industry develops. Additional discussion on the environmental and productivity impacts 

                                                      
21

 Erosion also impairs rivers and lakes as fertilizer, nutrients, and other agricultural residues run off into 

waterways (Ribaudo & Johansson, 2006). 
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of residue removal are provided in Andrews (2006), Blanco-Canqui (2010), Blanco-Canqui & Lal 

(2007), Karlen (2010), and the updated Billion-Ton Study (U.S. DOE, 2011b).  

Residue removal concerns are not universal. For some areas, partial removal of residue may 

not impact future productivity and may even provide productivity benefits for areas with higher 

residue production. In these cases, crop residues are an appealing biomass feedstock as an established 

crop with lower costs and relatively concentrated availability (U.S. DOE, 2011b). 

Dedicated Energy Crops 

Dedicated energy crops are crops planted specifically for energy use and not human or animal 

consumption. There are four main energy components in dedicated energy crops: oils, sugars, 

starches, and lignocellulose. Although oil-, sugar-, or starch-based crops can be grown as dedicated 

energy crops, they are easily metabolized and primarily grown for human or animal consumption. As 

a result, oil-, sugar-, and starch-based feedstocks are considered first-generation biofuel sources. 

Lignocellulosic materials, such as grasses and woody biomass, are difficult to break down 

and typically indigestible by the human body. Biofuel from lignocellulosic material is considered a 

second-generation biofuel, referred to as cellulosic biofuel. Lignocellulosic crops are an attractive 

biofuel source for their higher energy values. Development of a cellulosic biofuel industry could be 

highly valuable since agricultural residues also contain lignocellulosic material (e.g. stems, leaves, 

roots). Not only would the biofuel industry be able to take advantage of dedicated lignocellulosic 

crops, but could also utilize agricultural residues. The following subsections describe two categories 

of lignocellulosic crops: herbaceous energy crops (HEC) and short-rotation woody crops (SRWC) 

(Brown, 2003).  

Herbaceous Energy Crops (HEC) 

The main characteristic separating HEC from SRWC is a lack of woody tissue. HEC can be 

annual or perennial, but the above-ground portion of the plant only survives one growing season. The 
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plants are harvested at least once a year and, depending on plant characteristics and locations, may be 

harvested multiple times. Harvest yields tend to be higher in tropical and subtropical regions.  

The most notable herbaceous energy crops, due to higher lignocellulose content, are grasses. 

Grasses are classified as either thick-stemmed or thin-stemmed. Thick-stemmed grasses originate 

from the tropics and can be annual or perennial. Examples include sugarcane (perennial) and sorghum 

(annual). One disadvantage of thick-stemmed grasses is the labor-intensive, and therefore costly, 

harvest process. Thin-stemmed grasses can also be perennial or annual and contain both cool-season 

and warm-season grasses. Warm-season grasses tend to be more nutrient efficient and drought-

resistant. Two common thin-stemmed grasses are fescue (cool-season) and switchgrass (warm-

season). Thin-stemmed grasses can be harvested with conventional hay equipment, a major advantage 

over thick-stemmed grasses. Thin-stemmed grasses also do not exhibit the degree of lodging observed 

in thick-stemmed grasses, or plants falling on each other as they increase in height, offering more 

flexibility in harvest timing (Brown, 2003).  

Switchgrass (panicum virgatum), a warm-season perennial grass native to North America, 

was identified by the U.S. Department of energy (DOE) as the model herbaceous energy crop for 

biofuel feedstock (Wright & Turhollow, 2010).
22

 Minimal fertilization requirements and a deep root 

system, which provides drought and high temperature tolerance, make switchgrass an attractive crop 

for marginal land (Crooks, 2006; U.S. DOE, 2011b). The long root system also stores carbon deep in 

the soil rather than at the surface level limiting carbon escape during recovery (Comis, 2006).  

Compared to major U.S. farm crops, switchgrass has several advantages. Even if harvested 

annually, switchgrass provides improved wildlife habitat and hunting opportunities (U.S. DOE, 

2011b). As a perennial crop, little management is needed after establishment. Avoiding annual tillage 

reduces the potential for soil, water, and fertilization loss (Comis, 2006; Mitchell, Vogel, Schmer, & 

                                                      
22

 Wright (July 2007) and Mitchell, Vogel, Schmer, & Pennington (2010) provide historical background 

surrounding the selection of switchgrass as the model herbaceous energy crop.  
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Pennington, 2010). Switchgrass also yields about four times the cellulosic material and seven tons 

more soil carbon per acre than corn (Comis, 2006; Crooks, 2006). With higher cellulosic material per 

acre and less energy-intensive production, switchgrass provides three times the net energy gain 

compared to corn when converted into ethanol (Crooks, 2006).  

Switchgrass is not without limitations. Yields are lower during the first three years as the 

plant germinates and increases in density. Growth can be limited by weed competition, seed 

dormancy, and poor seedling vigor. Even though switchgrass requires limited fertilization, weed 

control is necessary for plant development (ISU Agronomy, 2007). For switchgrass to provide enough 

feedstock to sustain a commercial-scale biorefinery, a large amount of land will need to shift from 

current activities into switchgrass production. Large shifts in land use may alter wildlife habitat and 

other environmental benefits associated with current ecosystems. Although research and farming of 

switchgrass in the United States goes back more than 70 years (Mitchell, Vogel, Schmer, & 

Pennington, 2010), the harvest, storage, and transport of enough switchgrass to operate a commercial 

scale biorefinery is uncharted territory. Research on commercial scale switchgrass production is still 

on the early part of the learning curve and the potential long-run environmental impacts are unknown.  

Another perennial grass which has gained recent interest as a potential biofuel feedstock is 

Miscanthus. Considerable study of Miscanthus has been conducted throughout Europe including 

direct combustion for local power generation (Heaton, Clifton-Brown, Voight, Jones, & Long, 

2004a). As a non-native grass to North America, Miscanthus research in the United States has been 

limited, but recent trials in Illinois provided evidence of Miscanthus’ potential as a biofuel feedstock 

in the United States. Miscanthus provided more than four times the quantity of biomass in a side-by-

side trial with switchgrass. Compared to corn grain, Miscanthus was estimated to provide 260% more 

ethanol per hectare (Heaton, Dohleman, & Long, 2008). Challenges of commercial scale Miscanthus 

production in the U.S. are similar to those for switchgrass. In addition, Miscanthus is a non-native 

grass which raises concerns about invasiveness (U.S. DOE, 2011b).  
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Short-Rotation Woody Crops (SRWC) 

Short-rotation woody crops (SRWC) are defined as woody biomass that is fast growing and 

suitable for use in dedicated feedstock supply systems (Brown, 2003). Valuable characteristics 

include rapid juvenile growth, wide site adaptability, and pest and disease resistance. Harvest 

rotations range from 3-12 years. SRWC can be classified as hardwoods or softwoods. Hardwoods are 

flowering plants (angiosperms) including willow, oak, and poplar. Hardwoods have many advantages 

including higher density, ease of delignification, and carbohydrate accessibility. Softwoods include 

most evergreens (gymnosperms) such as pine, spruce, and cedar. Softwoods are advantageous due to 

their fast growth, and have value as construction lumber and pulpwood, which makes softwood waste 

readily available. Yet, the carbohydrates are not as accessible in softwoods as in hardwoods. 

Therefore, development in SRWC has focused mainly on hardwoods for feedstock supply systems. In 

the United States, hybrid poplar and eucalyptus have the most potential as biofuel sources. Other 

hardwood feedstock sources include: alders, mesquite, Chinese tallow, willows, silver maple, 

sweetgum, sycamore, and black locust (Brown, 2003). SRWC offer similar advantages as perennial 

grasses in terms of improved soil productivity and wildlife habitat. 

Although not classified within the SRWC, forest residues are another source of woody 

biomass. Forest thinning can provide feedstock for biofuel while improving forest health if sufficient 

structure is left for cover, erosion control, and habitat (Graham, McCaffrey, & Jain, 2004). Similar to 

agricultural residues, some forest residue should be left for the benefit of the forest ecosystem – for 

example, residues provide habitat for wildlife and other organisms, nurse logs for seed germination, 

water management, etc. (Harmon, et al., 2004; U.S. DOE, 2011b). Disadvantages of forest residues 

stem from accessibility and recovery issues. Many forest areas lack sufficient roads or open areas for 

the large equipment needed to remove and transport timber material (Perlack, Wright, Turhollow, 

Graham, Stokes, & Erback, April 2005). 
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Biomass potential 

With several alternative feedstock sources, biomass has the potential to significantly 

contribute to the U.S. energy sector. In 2005, a U.S. DOE project out of Oak Ridge National 

Laboratory evaluated the feasibility of a U.S. billion-ton annual supply of biomass (Perlack, Wright, 

Turhollow, Graham, Stokes, & Erback, 2005). Commonly referred to as the “Billion-Ton Study,” the 

report concluded that 1.3 billion dry tons of biomass could be supplied annually towards biofuels with 

changes in land use and agricultural and forestry practices. This quantity of biomass would offset 

approximately 30% of U.S. petroleum consumption. A 2011 update to the Billion-Ton Study 

attempted to address some of the shortcomings of the original report. Although contributions from 

crop residue and forests were lower in the updated report, increased energy crop estimates offset 

these, resulting in a relatively unchanged total biomass supply. 

Another study from the Bio-based Energy Analysis Group at the University of Tennessee 

proposed and evaluated the possibility of achieving 25 percent of U.S. energy consumption from the 

agricultural and forestry sectors by 2025, denoted as the 25x`25 goal (English, et al., 2006). While 

feasible, major increases in dedicated biomass production would be needed to meet this goal. 

Second-generation biofuels do not use major food crops such as corn for feedstock, but this 

does not imply development of the second-generation biofuel industry will not impact commodity 

markets. First, demand for dedicated biomass crops will increase competition for land. Second, some 

types of biomass, such as crop residues, are currently used for livestock feed or bedding. A significant 

increase in demand for these resources as biofuel feedstocks may increase costs of commodity 

production.  

2.6 State of industry and market uncertainty 

Second-generation biofuel production in the United States is currently limited to small or 

demonstration scale facilities; a commercial scale second-generation biorefinery does not exist. Table 
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2.3 details the biomass-to-ethanol plants currently operating including location, feedstock, and 

capacity. Given the cost advantages of utilizing food and beverage waste for biofuel, several waste-

to-ethanol biorefineries are operating, but the largest facility is 5.4 mgy.  

Table 2.3 – Biomass-to-ethanol plants operating and under construction 

Company Location Feedstock Capacity 

(mgy) 

Constructed    

BP Biofuels North America Jennings, LA Sugar cane bagasse 1.4 

Fiberight, LLC^ Blairstown, IA MSW 5 

Golden Cheese Company of California^ Corona, CA Cheese whey 5 

KL Process Design Group Upton, WY Wood waste 1.5 

Land O’Lakes Melrose, MN Cheese whey 1.5 

Merrick and Company  Aurora, CO Waste beer 3 

Parallel Products Louisville, KY Beverage waste 5.4 

POET Scotland, SD Corn stover 0.20 

Summit Natural Energy Cornelius, OR Waste sugars/starches 1 

UTBI Vonore, TN Corn stover and switchgrass 0.25 

Wind Gap Farms Baconton, GA Brewery Waste 0.4 

Under construction    

Abengoa Bioenergy Corp. Hugoton, KS Crop residue & energy crops 25 

Dubay Biofuels Greenwood Greenwood, WI Cheese whey 20 

DDCE Nevada, IA Corn stover 40 

POET  Emmetsburg, IA Corn stover 25 

Source: http://www.ethanolrfa.org/bio-refinery-locations/ 

^ Constructed but currently not operating 

A 25 mgy cellulosic ethanol plant proposed by POET for Emmetsburg, Iowa is expected to 

be the first commercial scale cellulosic biorefinery in the United States. The technology for the 

Emmetsburg plant will be based on POET’s pilot scale plant in Scotland, South Dakota. The 

biorefinery was originally scheduled to be completed and operational by 2011 but faced several 

setbacks including a delay in the government loan. The facility now is expected to be operational in 

2013. DuPont Danisco Cellulosic Ethanol (DDCE) announced in June 2011 plans to build a 40 mgy 

plant in Nevada, Iowa. The proposed biorefinery will use technology from UTBI’s pilot plant in 
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Vonore, Tennessee.
23

 Both the POET and DDCE biorefineries intend to use corn residue for 

feedstock.  

Despite policy incentives for second generation biofuel production and the existence of 

several biomass-to-biofuel conversion methods (Swanson, Platon, Satrio, & Brown, 2010; Kazi, et 

al., 2010a; Wright, Daugaard, Satrio, & Brown, 2010), investment has been limited by current costs 

of production and uncertainty in future policies and market conditions. Rosburg & Miranowski 

(2011) estimate ethanol producers would lose $0.82 - $1.65 per gallon of ethanol ($1.23 – $2.47 per 

gallon gasoline equivalent, 2007$) given current production costs, a long-run oil price of $100 per 

barrel, and no policy incentives. Alternatively, the long-run price of oil would need to be around $135 

- $170 per barrel for cellulosic ethanol production to break even without significant government 

intervention. The U.S. Energy Information Agency (EIA) forecasts oil prices of $129 per barrel in 

2022 and $145 per barrel in 2035 in their reference scenario (2010$) (see Figure 2.9).  

Feedstock procurement is one area in which costs are expected to decrease. Ongoing research 

is attempting to identify ways to reduce costs and increase efficiency of commercial scale biomass 

harvest, storage, and transport. Yet, even with a more efficient biomass supply system, the biorefinery 

is still dependent on a non-commercialized feedstock with variable annual supply. Given the novelty 

of commercial scale biomass production, potential investors may be hesitant to invest without a better 

understanding of the potential variation in feedstock supply and/or strategies to lay off risk associated 

with feedstock variability. In addition to variation in quantity, the variation in biomass quality is a 

cause for concern. The quality of final product is directly related to the composition of delivered 

biomass. Production costs rise as additional processes are needed to treat heterogeneous biomass with 

undesired contents (Wright, Daugaard, Satrio, & Brown, 2010). 

                                                      
23

 The University of Tennessee Biofuel Initiative (UTBI) is a joint venture between the University of Tennessee, 

University of Tennessee Research Foundation (UTRF), UT Institute of Agriculture (UTIA), Genera Energy 

LLC, and DuPont Danisco Cellulosic Ethanol, LLC (DDCE). 



www.manaraa.com

34 

 

 

Biorefinery investment decisions also depend on expectations about future market demand 

and government policies (Lin & Yi, 2011). If continued and enforced, government policy programs 

reduce uncertainty for potential biomass suppliers and biorefinery investors. The cellulosic biofuel 

producer tax credit is still in effect but is up for renewal on December 31, 2012. Recent resistance to 

the conventional ethanol tax credit, as well as the biodiesel tax credit, may be an indication of the 

political environment the cellulosic industry will face in December.  

More crucial is the uncertainty in the RFS2 cellulosic biofuel mandates. Discussed in Box 

2.1, the EPA Administrator is authorized to waive part or all of the cellulosic sub-mandate; the 

Administrator has used this right every year since the first cellulosic mandate in 2010. If the mandates 

were enforced, market-based policies such as the biofuel producer tax credit would not be needed to 

incentivize biofuel production (Babcock B. , 2010; GAO, 2011; NRC, 2011).
24

 Further, guaranteed 

market demand for biomass would reduce risk associated with perennial crop production while 

cellulosic biofuel investors would be ensured future demand for their product (Mallory, 2011). 

However, the EPA’s ability to waive part or all of the cellulosic sub-mandate fosters uncertainty in 

the minds of potential biomass suppliers and biorefinery investors. In short, a policy cannot reduce 

uncertainty unless it is certain itself.
25,26

  

The possibility of future cellulosic mandate waivers also creates uncertainty in markets for 

agricultural commodities and other biofuels. Thompson & Meyer (2011) detail three different ways 

the EPA could implement a cellulosic mandate waiver and the potential impact on other biofuel 

markets: 

                                                      
24

 With enforced mandates, tax credits or subsidies would have no impact on the level of biofuel production 

unless the price of oil increased enough such that higher market demand for biofuel together with subsidy 

payments pushed ethanol production above the mandated level (Babcock B. , 2010). 
25

 Rupert Edwards, Head of Research and Market Analysis at Climate Change Capital, used a similar phrase in 

reference to the UK Government’s carbon policy proposals: “a policy meant to reduce uncertainty must itself be 

certain.” 
26

 Additional discussions on the conditions for and limitations of investment in commercial scale biofuels are 

available in Babcock, Marette, & Tréguer (2011) and Kenkel & Holcomb (2009).  
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1. Reduce the cellulosic sub-mandate, advanced biofuel mandate, and total biofuel mandate 

by the same quantity.  

2. Reduce the cellulosic sub-mandate but maintain the advanced and total biofuel mandates. 

3. Reduce the cellulosic sub-mandate and advanced biofuel mandate by the same quantity 

but maintain the total biofuel mandate.  

Option 1 is a universal reduction and will not impact other biofuel categories. If the EPA 

Administrator uses Option 2, other advanced biofuels such as biodiesel will need to compensate for 

the waived cellulosic biofuel quantity. Option 3 shifts the waived cellulosic biofuel quantity to the 

conventional biofuel mandate or to corn-based ethanol. Figure 2.11 illustrates these three options.  

Figure 2.11 – RFS2 mandates and three options for waiving the cellulosic mandate  

 

Source: Meyer and Thompson (2011). Figure 2. 

The flexibility of the EPA Administrator to choose between Options 1, 2, or 3 introduces new 

uncertainty for future biodiesel, corn ethanol, and agricultural commodity markets. Depending on 

which option the administrator chooses to implement the waiver, market demand for U.S. biodiesel 

and corn ethanol could vary by several billion gallons per year (Thompson & Meyer, 2011).  

With the tax credit up for renewal and continued reductions in the RFS2 cellulosic mandate, 

some have proposed modifications to current biofuel policies (GAO, 2011; Irwin, Good, & Mallory, 

2011; Mallory, 2011; Tyner, 2011; Tyner, Brechbill, & Perkis, 2010; Tyner, Taheripour, & Perkis, 

2010). In terms of tax credits, one suggested modification is to make tax credits variable with ties to 

either the price of oil or the blending margin (Tyner, Taheripour, & Perkis, 2010; Irwin, Good, & 

Mallory, 2011; Tyner, Brechbill, & Perkis, 2010; NRC, 2011). While a tax credit of this form may 
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reduce government spending by removing support when market conditions make biofuels 

competitive, it would not directly reflect policy objectives such as GHG emissions reductions (NRC, 

2011).  

To incentivize biorefinery investment, Mallory (2011) proposes an investment tax credit or a 

one-time payment to lower capital investment costs. This program would reduce the pay-back period 

on investment, thereby lowering investment risk.  

Given GHG emissions benefits is a common policy objective for biofuel support, Tyner 

(2011) suggests making any subsidy payments at least partially dependent on biofuel-specific GHG 

reductions as determined by an independent entity. One option is to divide subsidy payments into two 

parts – the first part as a fixed payment per gallon biofuel and the second part variable based on GHG 

emissions reductions. This type of support mechanism would incentivize biofuel processors to reduce 

GHG emissions (NRC, 2011).  

2.7 Other challenges of cellulosic biofuel expansion 

Growth of the cellulosic biofuel industry has and will continue to face challenges beyond 

investor uncertainty. A few key challenges to industry development are discussed in the following. A 

more detailed discussion on the challenges of biofuel expansion is available elsewhere (NRC, 2011). 

A significant amount of land will need to be allocated into dedicated biomass production to 

achieve future cellulosic biofuel targets. Yet, recent survey results suggest landowners are hesitant to 

commit to new energy crops such as switchgrass. For example, a 2009 12-state survey summarized in 

Qualls et al. (2011) and Menard et al. (2011) found only 60% of respondents were somewhat to very 

interested in supplying switchgrass for bioenergy, even if profitable. This is an increase from the 2005 

survey of Tennessee farmers where only 29.6% were interested and 46.7% were unsure and did not 

know if they would be willing to supply switchgrass if profitable (Jensen, et al., 2007). Variation in 

willingness to participate in biomass supply occurred for several reasons including operator age, 
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environmental concerns, farming experience, market expectations, and opportunity cost of learning a 

new production process. Raising landowner awareness of the benefits from biomass production may 

be an important step in the feasibility of commercial scale production. 

Public perception and consumer preferences influence the demand for biofuel. Negative 

publicity, including discussions surrounding the food-versus-fuel debate, impacted demand for first-

generation biofuels. Further, some consumers have shown hesitancy to use biofuels due to 

unfamiliarity and uncertainty in long-run vehicle impacts. Beyond consumer preferences, future 

demand for biofuel also may be limited by competing energy technologies such as hydrogen, oil 

shale-derived fuels, tar sands-derived fuels, coal-to-liquids, and electricity (U.S. DOE, 2011a).  

Probably the most pressing obstacle for development of the entire biofuel industry, both first- 

and second-generation, is the “blend wall.” A blend wall is a theoretical limit on the quantity of 

ethanol that can be blended into the U.S. transportation fuel supply given regulatory blend limits. The 

previous regulatory cap of 10% ethanol blends (E10) for traditional vehicles limited ethanol blending 

to about 14 billion gallons per year, well below future mandate levels (Tyner, Brechbill, & Perkis, 

2010). E85 has the potential to partially alleviate the blending wall constraint, but lack of refueling 

infrastructure has created limited demand for E85 relative to the flex-fueled fleet and below the 

supply potential of the ethanol industry. Less than 2% of all refueling stations are equipped to offer 

E85 (U.S. DOE, 2011b; Tyner, Brechbill, & Perkis, 2010). Further, survey estimates suggest upwards 

of 75% of flexible fuel vehicle owners may not know they can use E85 (Jessen, 2011). 

In October 2010, the EPA increased the regulatory ethanol blend limit to 15% (E15) for cars 

and light trucks 2007 or newer. The E15 waiver was extended to cars and light trucks 2001 or newer 

in January 2011 (U.S. EPA, 2011). The increase in the regulatory limit to E15 will only provide 

temporary relief from the blend wall as mandated volumes will exceed the potential of E15 by 2015 

(Tyner, Brechbill, & Perkis, 2010). Therefore, future RFS2 mandates will not be achievable without 
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further increases in the regulatory blend limit, gasoline consumption, or E85 use (Duffield, Xiarchos, 

& Halbrook, 2008; Mallory, 2011).  

2.8 Conclusions 

This chapter provided an overview of the policies, potential, and challenges of the biofuel 

industry, with a focus on cellulosic biofuel. A historical account of biofuel policies evidenced the 

strong governmental support motivated by the concept of energy security and independence, potential 

rural economic development opportunities, and estimated environmental benefits associated with 

substituting biofuel for fossil fuels. Concerns regarding the ability of first-generation biofuels to 

provide a long-run alternative for fossil fuels turned attention and interest to second-generation 

biofuels. Biomass has the potential to significantly contribute to the U.S. energy sector with several 

alternative feedstock sources, but the second-generation biofuel industry has been slow to develop. 

Among other constraints, industry growth is limited by current production costs, uncertainty in future 

policies and market conditions, and the blend wall. With the motivating factors that fostered interest 

in development of a biofuel industry still relevant today and likely to remain relevant far into the 

future, issues surrounding commercial scale biofuel production will continue to be an important part 

of environmental and agricultural policy discussions.  
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CHAPTER 3. AN ECONOMIC EVALUATION OF U.S. BIOFUEL EXPANSION 

USING THE BIOFUEL BREAKEVEN PROGRAM WITH GHG ACCOUNTING  

 

Summary results from this chapter are published in Rosburg and Miranowski (2011) 

 

Abstract 

To evaluate the long-run economic feasibility of local biofuel and biomass markets under various 

policy and market scenarios, an Excel-based program called The Biofuel Breakeven Program 

(BioBreak) is developed. The economic framework underlying BioBreak is described and the 

program is used to evaluate the economic feasibility of 14 local cellulosic biofuel markets that vary 

by feedstock and location. Program results suggest long-run cellulosic ethanol production is not 

sustainable without significant policies to support the industry or long-run oil prices of $135 - $170 

per barrel. The BioBreak program results are extended using life-cycle analysis to derive the per unit 

cost of carbon savings from substituting cellulosic ethanol for conventional transportation fuel. This 

carbon price can be interpreted as the value of reduced emissions implied by current government 

intervention in the cellulosic ethanol industry, such as the RFS2 mandates. For the markets 

considered in this analysis, policies that sustain cellulosic ethanol production are found to value a 

reduction in carbon equivalents between $141 and $280 per metric ton, higher than most carbon 

prices discussed in the literature. 

 

3.1 Introduction 

The revised Renewable Fuels Standard (RFS2) mandates a minimum contribution from 

cellulosic biofuel to the U.S. transportation fuel mix starting in 2010 with increasing volume 

requirements up to 16 billion gallons in 2022. At the same time, the 2008 Farm Bill provides tax 

credits to cellulosic biofuel producers and subsidy payments to biomass suppliers. Even with 

mandated production and market-based incentives, the industry has been slow to develop, and 

cellulosic biofuel production has been limited to research labs and pilot plants. Without a commercial 

scale cellulosic biorefinery or biomass supply system, knowledge is limited regarding the costs and 

environmental impacts of supplying and converting cellulosic biofuel at the scale needed to meet 
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current and future mandate levels. Consequently, economists and environmentalists have been tasked 

with evaluating potential economic and environmental implications of biofuel expansion, and more 

specifically, the impacts of meeting the RFS2 mandates. 

Understanding the economic implications of biofuel expansion first requires an understanding 

of the economics of cellulosic biofuel production. For instance, can the production of cellulosic 

biofuel be a long-run breakeven proposition given available technology and market conditions? If not, 

what are the costs or market conditions needed to sustain a cellulosic biofuel market? These are the 

main questions addressed by the Biofuel Breakeven program (BioBreak). BioBreak is a flexible, 

Excel-based program developed to evaluate the long-run economic feasibility of local biofuel markets 

using breakeven models of the local feedstock supply system and biofuel refining process.
27

 A local 

biofuel market will exist only if the biofuel processor can obtain sufficient feedstock and the local 

biomass market can deliver sufficient feedstock at a market price that allows both parties to break 

even in the long run. Given expected local market conditions derived from published literature 

estimates, BioBreak calculates the supplier and processor long-run breakeven values for biomass. 

Further, BioBreak derives the difference or “price gap” between the estimated supplier and processor 

breakeven prices. If the price gap is zero or negative, the local biofuel market is economically 

sustainable in the long run, and if positive, the price gap represents the market incentive needed to 

sustain the local market. This chapter provides an overview of the economic models underlying the 

BioBreak program and presents results from an application to 14 cellulosic ethanol markets that vary 

by feedstock and location.  

To provide an alternative perspective of the price gap derived from BioBreak, we extend de 

Gorter & Just’s (2009b) economic model of the transportation fuel sector with a biofuel blending 

                                                      
27

The BioBreak program is an Excel-based spreadsheet program. The BioBreak program can be executed using 

either fixed coefficients or stochastic coefficients. The fixed coefficient version allows users to evaluate three 

cost scenarios, denoted as low, baseline, and high cost scenarios based on user-specified parameter and model 

assumptions. The stochastic option within BioBreak allows users to set distributional assumptions and conduct 

simulation through Crystal Ball® to account for parameter uncertainty. 
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mandate to include cellulosic biofuel production. This model provides the foundation to evaluate the 

carbon tax or price needed to satisfy biofuel blending mandates. The results from the BioBreak 

application are used in conjunction with greenhouse gas (GHG) emissions reductions derived from 

life-cycle analysis to identify the carbon tax or price needed to sustain local cellulosic ethanol markets 

in the long-run. This carbon price, which represents the per unit cost of carbon savings from 

substituting cellulosic ethanol for conventional fuel, can be interpreted as the value of reduced 

emissions implied by current government intervention in the cellulosic ethanol industry such as the 

RFS2 mandates. 

Further applications of the BioBreak program can be found in the National Academies reports 

on Liquid Transportation Fuels from Coal and Biomass (ALTF, 2009) and the Renewable Fuels 

Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policies (NRC, 2011). The 

ALTF report uses a fixed coefficient version of BioBreak to derive low, baseline, and high cost 

estimates of cellulosic feedstock supply. The 2011 National Academies report utilizes the stochastic 

BioBreak program to estimate the cost and feasibility of cellulosic feedstock supply for select 

feedstocks and locations and presents an implicit valuation of carbon emissions reductions. A 

summary of the results presented in this paper are published in Rosburg & Miranowski (2011). 

3.2 Economic framework for the BioBreak program  

The BioBreak program is built using breakeven models for the local feedstock supply system 

and the biofuel refining process. The separation of analysis into biomass production and biomass 

processing is based on the assumption that the biorefinery will outsource biomass production to local 

producers.
28

 

                                                      
28

 The biorefinery is assumed to contract with several local suppliers to acquire enough biomass for commercial 

operation. With a competitive biomass market, the biorefinery cannot price discriminate and the price paid to all 

suppliers will equal the price paid for the last ton of biomass (i.e., marginal unit). 
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3.2.1 Biofuel processor 

Since a commercial scale biorefinery is not currently available, the model of the biofuel 

refining process reflects a profit-maximizing biofuel processor deciding whether to invest in a 

proposed biorefinery. The biofuel processor makes the decision to invest based on the present value 

of expected net returns over the life of the biorefinery. Equation (1a) describes the present value of 

the stream of net returns π for a hypothetical biorefinery with plant capacity Q and expected plant life 

of T years. Net returns in each year are determined by revenue from biofuel production (  ), 

biorefinery conversion and investment costs (    ), and biofuel feedstock costs (    ). For simplicity, 

equation (1c) defines R(Q), CR(Q), and CF(Q) as the present value of biorefinery revenue, conversion 

and investment costs, and feedstock costs over the life of the plant, respectively. 

   ∑    [  ( )      ( )      ( )]

 

   

 
(1a) 

     ∑      ( )   ∑        ( )

 

   

  ∑         ( )

 

   

 

   

 
(1b) 

     ( )    ( )    ( )  
(1c) 

If the present value of net returns is greater than or equal to zero (    ), the biofuel 

processor will build the proposed biorefinery. Given expected input and output prices and biorefinery 

technology, equation (1c) can be used to determine the optimal investment decision for a proposed 

biorefinery. Alternatively, equation (1c) can be used to determine the conditions (e.g., prices, 

technology) under which the biorefinery will break even in the long run (i.e.,    ). This latter 

approach is used in the BioBreak program to estimate the breakeven price of feedstock. Given 

biorefinery technology, expected biorefinery returns, and conversion costs, the maximum feedstock 

cost the biorefinery can incur over the life of the biorefinery and breakeven is: 

            ( )    ( )    ( ). (2) 
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BioBreak makes assumptions regarding investor expectations to derive a single estimate of 

the maximum price the biofuel processor can pay per ton of feedstock in the long-run. First, the 

investor expects the biorefinery to operate at capacity every year within the plant life. Therefore, all 

fixed costs are converted into expected per gallon costs based on plant capacity. Second, the annual 

investment cost and corresponding investment cost per gallon are determined by an amortization of 

the biorefinery cost over the life of the plant. Third, the investor has complete knowledge of the plant 

technology, including required inputs per unit of output, and expects plant technology to remain 

constant over the life of the plant. In other words, the biorefinery cannot increase efficiency during 

the plant life without additional investment costs. Given market expectations and fixed biorefinery 

technology, BioBreak uses expected long-run conversion costs and returns per gallon to derive the 

processor’s long-run breakeven price or derived demand (DD) for feedstock.  

Equation (3) outlines a simplified version of the equation used in BioBreak to calculate the 

processor’s long-run breakeven price or derived demand (DD) per ton of feedstock.
29

 

   (                     )    . (3) 

Consistent with equation (2), biorefinery derived demand calculated by equation (3) equals total 

expected revenues per ton of feedstock converted to biofuel less non-feedstock conversion costs. The 

expected market price of biofuel is calculated as the energy equivalent price of conventional fuel, that 

is, the price fuel blenders would be willing to pay in a competitive market. In equation (3), PCF 

denotes per gallon price of conventional fuel and EV denotes the energy equivalent factor of 

conventional fuel to biofuel. Within BioBreak, the price of conventional fuel is a user-specified 

function of the price of oil (Poil).
30

 Beyond returns from the sale of each gallon of biofuel, the 

                                                      
29

 Although the calculation within brackets in equation (3) appears to be a simple linear equation, there are 

several exogenous factors underlying the parameters in the processor derived demand equation resulting in 

complicated, non-linear relationships. Exogenous factors include the price of energy, conversion technology, set 

of potential feedstocks, and capital investment factors. 
30

For the application to the cellulosic ethanol market in Section 3.4, the price of conventional gasoline is 

assumed to be a constant fraction of the price of oil, Pgas= POil/29 based on historical trends (Elobeid, Tokogz, 

Hayes, Babcock, & Hart, 2006), but this relationship is flexible within BioBreak. 
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processor may also receive revenues from government incentives (GP), for example, tax credits, 

coproduct production (VC), and octane benefits (VO) per gallon of processed biofuel. Non-feedstock 

biorefinery costs per gallon include amortized investment costs (CI) and operating costs (CO). The 

calculation within brackets in equation (3) provides the net return per gallon of biofuel above all non-

feedstock costs. The conversion ratio of gallons of biofuel produced per dry ton of biomass (YO) 

converts per gallon net return prior to feedstock costs into the processor’s DD per dry ton of 

feedstock.  

The general format of equation (3) allows BioBreak to accommodate most biofuel platforms 

by categorizing platform-specific costs into the appropriate model parameters. The application in 

section 3.4 of BioBreak to the cellulosic ethanol industry uses data for a proposed biorefinery with a 

biochemical process – co-current dilute acid prehydrolysis and enzymatic hydrolysis. A 

distinguishing characteristic of a biochemical process is the use of enzymes to breakdown cellulose 

into simple sugars. As a result, enzyme costs are included in the operating costs for this analysis. 

Similarly, investment costs, other operating costs, and coproduct value (electricity) are consistent 

with a biochemical processing facility. Biorefineries utilizing other conversion platforms, such as a 

gasification or fast pyrolysis design, can be analyzed by BioBreak with minor adjustments to the 

interpretation and values included into each cost component.
31

 

3.2.2 Biomass supply 

Since the biorefinery will contract with local suppliers to acquire sufficient biomass for 

commercial-scale production, the model of biomass supply underlying BioBreak evaluates the long-

run per ton feedstock cost faced by the biorefinery in a competitive local biomass market. With a 

competitive market, the biorefinery cannot price discriminate and the price paid to all suppliers will 

be the price paid for the marginal unit. The minimum payment a supplier of the marginal unit would 

                                                      
31

Coefficients for biomass gasification, fast pyrolysis, and biochemical processes can be obtained from Swanson 

et al. (2009),Wright et al. (2009), and Kazi et al. (2010a), respectively. 
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accept is the value at which the supplier breaks even in the long run. The long-run breakeven price for 

the marginal unit will depend on all costs incurred, including land and biomass opportunity costs, to 

produce, store, and transport biomass to the biorefinery in the long run less any government 

incentives received for biomass supply (Gs) (e.g., production subsidies). Equation (4) outlines a 

simplified version of the equation used in BioBreak to estimate the long-run supply cost (SC) for the 

last ton of biomass to the biorefinery.
32  

   {                              }     (4) 

Depending on biomass feedstock, costs per dry ton include establishment and seeding (CES)
33

, land 

and biomass opportunity costs (COpp), harvest and maintenance (CHM), stumpage fees (SF), nutrient 

replacement (CNR), biomass storage (CS), transportation fixed costs (DFC), and variable 

transportation costs calculated as the variable cost per mile (t) multiplied by the average hauling 

distance to the biorefinery (D). Average hauling distance is a function of the annual biorefinery 

biomass demand, annual biomass yield, and biomass density, and calculated using the formulation by 

French (1960) for a circular supply area with a square road grid.
34

 Costs reported per acre are 

converted into per ton costs using the annual biomass yield per acre.  

                                                      
32

 Similar to the equation for the biofuel processor’s DD for feedstock, several exogenous factors (e.g., price of 

energy, conversion technology, feedstock, etc.) underlie the parameters in Equation (4) resulting in non-linear 

relationships between parameters.  
33

For perennial crops, the establishment and seeding cost is amortized over the expected life of the crop.  
34

Due to heterogeneity in non-transportation production costs within the capture region, BioBreak uses the 

average distance rather than the capture region distance. Although the transportation cost per unit of biomass 

will be higher at the edge of the capture region, the supply cost will not necessarily be strictly increasing with 

distance due to heterogeneity in production and opportunity costs. Even with higher transportation costs, a 

biomass supplier at the edge of the capture region with low production costs may be willing and able to supply 

biomass at a lower price than a biomass supplier with relatively high production costs located close to the 

biorefinery. Since BioBreak does not account for supplier heterogeneity within local markets, the program 

assumes the average hauling distance within the capture region is representative of the location of the last unit 

of biomass purchased by the biorefinery to meet the biorefinery feedstock demand. Using the capture region 

distance would provide the correct estimate of the supply cost if the last unit of biomass purchased by the 

biorefinery is located at the edge of the capture region, but would overestimate the supply cost in all other cases. 

Estimated biomass supply costs increase by $0.80-$2.70 per ton, depending on feedstock, if capture region 

distance is used instead of average hauling distance. Chapter 4 considers supplier heterogeneity within local 

markets and therefore uses capture region distance.  
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3.2.3 Biofuel market feasibility 

A local biofuel market exists only if sufficient feedstock is deliverable at a market price that 

allows both parties to break even in the long run. In the absence of cellulosic biofuel mandates, 

economic sustainability of cellulosic biofuel markets depends on the relationship between the long-

run price the local biomass producers will accept for biomass (SC) and the long-run price the biofuel 

processor can pay for biomass (DD). Given market conditions, BioBreak provides the difference or 

“price gap” between the biomass supply price and processor DD (i.e., price gap = SC – DD). If the 

price gap is zero or negative, the local biofuel market is economically sustainable in the long run, and 

if positive, the price gap represents the gap that needs to be closed to sustain the local biofuel market.  

BioBreak derives point estimates of the SC and DD values and the price gap between them 

for a fixed plant capacity and local feedstock market. Figure 3.1 provides a graphical depiction of the 

price gap derived by BioBreak. Although illustrated as a horizontal line, the DD for feedstock 

calculated by the BioBreak program is a point estimate at A, that is, the price the processing plant can 

pay per ton of feedstock if operating at capacity Q. Otherwise, the plant will not operate in the long 

run.
35

 Consider the two upward sloping biomass supply curves in Figure 3.1. First, SC1 intersects the 

DD curve but at a feedstock quantity less than necessary to operate the biorefinery at capacity and 

still break even in the long run. For a biomass market with SC1, BioBreak would calculate the price 

gap = (P - PE) > 0 at feedstock quantity Q. Alternatively, if SC2 was the supply curve for the biomass 

market which intersects DD at point A, the price gap = (P – PE) = 0 at quantity Q. 

  

                                                      
35

 The BioBreak model presented here assumes a fixed plant capacity and does not consider smaller or larger 

biorefineries. Implications of this assumption are discussed in Section 3.4. Chapter 4 considers  

location-specific cost-minimizing biorefinery capacity given local biomass and biorefinery production 

conditions.  
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Figure 3.1 – Price gap estimated by BioBreak 

 

3.2.4 Mandated biofuel production and waiver credits 

In terms of the cellulosic biofuel blending mandates outlined in the U.S. RFS2, the price gap 

estimates from BioBreak provide an estimate of the potential costs of meeting mandated production if 

mandates are fully enforced. Yet, provisions within the Energy Independence and Security Act of 

2007 (EISA) allow for the EPA administrator to waive completely or in part the RFS2 cellulosic 

mandate if it is determined “implementing the requirement would severely harm the economy or the 

environment, or that there is inadequate domestic supply to meet the requirement” (RFA, 2010a). 

When a portion of the cellulosic biofuel mandate is waived, the EPA is required to make cellulosic 

waiver credits available for purchase by obligated parties which can be used to meet the revised 

mandated volumes in lieu of blending cellulosic biofuel.
36

 With waiver credits available, obligated 

parties will minimize losses through the purchase of waiver credits and/or investment in biofuel 

                                                      
36

 Waiver credits are priced at the maximum of “(i). $0.25 per cellulosic biofuel waiver credit, adjusted for 

inflation in comparison to calendar year 2008; or (ii) $3.00 less the wholesale price of gasoline per cellulosic 

biofuel waiver credit, adjusted for inflation in comparison to calendar year 2008” (U.S. EPA, 2010b, p. 14892). 

The wholesale price of gasoline is calculated as the average refiner’s monthly bulk sale price over the previous 

12 months as of September 30 prior to the compliance year. Waiver credits were available for $1.56 per gallon 

in 2010 and $1.13 per gallon in 2011 (U.S. EPA, 2010b; U.S. EPA, 2010a). The 2012 waiver credit price is 

significantly lower at $0.78 per gallon (U.S. EPA, 2012a). 
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production. The price gap derived from BioBreak will quantify the cost to obligated parties to meet 

mandated RFS2 blend volumes only if the price gap is less than or equal to the waiver credit price. If 

the price gap is higher than the waiver credit price, the revised mandate will be met with the purchase 

of waiver credits. In other words, the economic costs of meeting mandated production will be capped 

at the cost of purchasing waiver credits. BioBreak provides an option to evaluate the cost of meeting 

mandated production with and without a user-specified price for waiver credits.  

3.3 Simplifying assumptions  

The BioBreak estimates are based on a number of assumptions. Here, we address three key 

assumptions. A full discussion can be found in Miranowski & Rosburg (2010b).  

First, BioBreak assumes a fixed relationship between gasoline and ethanol based on the 

energy equivalence of ethanol to gasoline. A fixed relationship presumes gasoline and ethanol are 

perfectly substitutable in consumption and ethanol does not require an extra marketing cost. De 

Gorter & Just (2009a; 2009b) argue perfect consumption substitutability between ethanol and 

gasoline is a realistic assumption for low level blends of ethanol, such as 10 or 15 percent, and for 

E85 in flex fuel vehicles but may not be a valid assumption for differentiated products or in the 

presence of the “blending wall” (i.e., the regulatory limit on the amount of ethanol that can be 

blended with gasoline and supplied through traditional pumps). BioBreak evaluates the economic 

feasibility of cellulosic biofuel markets in the absence of the blending wall constraint but we 

acknowledge this may be another limiting factor to future biofuel market development.  

Second, BioBreak does not incorporate policy uncertainty and is not capable of analyzing 

short-run or temporary program impacts in its current form. The program application in Section 3.4 

considers the impacts of policy incentives but assumes incentives would be provided for the life of 

the biorefinery. Perhaps of greater concern is uncertainty regarding enforcement of RFS2 mandates. 

Since the EPA conducts an annual evaluation of the cellulosic ethanol industry and provides revised 
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mandates if deemed necessary, potential biofuel processors face uncertainty regarding the future 

biofuel market. The biofuel processor may require a minimum biorefinery return, or a ‘risk premium,’ 

to induce investment. A risk premium is not considered in the application of BioBreak presented here, 

but a minimum biorefinery return could be incorporated into the model without difficulty.  

Third, BioBreak does not consider the impact of energy price uncertainty on biofuel 

investment. If potential investors require a risk premium due to uncertainty in long-run energy 

markets, the actual DD will be lower and price gap higher than the estimates provided by BioBreak. 

With energy market uncertainty, a price gap estimate below zero will satisfy a necessary condition for 

development of a cellulosic biofuel market, that is, both biomass supplier and processor break even in 

the long run, but may not be sufficient to induce investment. 

3.4 Application of the BioBreak program 

We apply BioBreak to estimate the feasibility of cellulosic ethanol markets using a 

biochemical refining process (dilute acid prehydrolysis with saccharification and cofermentation) and 

seven potential feedstocks (corn stover, switchgrass, Miscanthus, wheat straw, alfalfa, farmed tress, 

and forest residue). Corn stover is evaluated for land in continuous corn production (CC) and land in 

a corn-soybean rotation (CS).
37

 We also consider a four-year corn stover/alfalfa rotation with two 

years in each crop (i.e., CCAA). Switchgrass is evaluated in three markets with characteristics 

considered representative of three regions: Midwest (MW), South Central (SC), and Appalachian 

(App). Miscanthus is evaluated for the Midwest and Appalachian regions, while corn-stover and 

wheat straw are assumed to be produced on current cropland base in the Midwest and Pacific 

Northwest (PNW) regions, respectively. To account for the heterogeneity in Midwest land quality, 

                                                      
37

 Continuous corn production is less profitable than a corn-soybean rotation with and without stover harvest 

because of the yield penalty associated with continuous corn (Iowa State University - University Extension, 

2010; Purdue University - Purdue Extension, 2009). Yet, continuous corn provides higher stover density in a 

given local market over two years and lowers biomass transportation costs.  
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switchgrass and Miscanthus are evaluated from biomass markets with high quality (HQ) and low 

quality (LQ) Midwest cropland.
38

 In total, we consider 14 biomass feedstock/market regions.  

The biorefinery technology and costs used in this application are based on the techno-

economic analysis by Kazi et al. (2010b) for a 54 million gallon per year (mgy) biorefinery. Although 

we do not consider larger or smaller biorefineries in this application, a brief discussion of the 

relationship between biorefinery capacity and production costs is warranted. Cellulosic biofuel 

production faces an economic trade-off between biorefinery economies of scale and biomass 

procurement diseconomies. As biorefinery capacity increases, biorefinery economies of scale result in 

decreasing average processing costs per gallon, at least up to a point. At the same time, the increase in 

feedstock demand for a larger biorefinery requires feedstock to be transported from more distant 

locations and/or the biorefinery to incentivize additional landowners within the capture region to 

supply biomass. Either method to increase feedstock supply increases the average feedstock cost per 

gallon. Given the complexity of the relationship between economies of scale and diseconomies of 

biomass procurement, an analysis of alternative biorefinery capacities is beyond the scope of the 

BioBreak model presented here.
39

  

Without data from a commercial scale biorefinery or biomass supply system, uncertainty 

exists regarding input values for the BioBreak program. BioBreak provides the option to estimate 

breakeven values with fixed parameters or with stochastic simulation based on user-specified 

parameter distributions.
40

 This analysis uses the stochastic simulation feature. Model parameter 

distributions are based on observed values in published literature which exhibit significant variation. 

Published literature values were updated to 2007 using USDA National Agricultural Statistics Service 

                                                      
38

 The two land quality scenarios in the Midwest were constructed to distinguish between valuable cropland 

with high opportunity cost in terms of foregone cash crop production and lower opportunity land such as 

cropland pasture.  
39

 Chapter 4 considers the tradeoff between processing economies and biomass procurement diseconomies. 
40

 BioBreak uses Oracle’s spreadsheet-based program Crystal Ball® for stochastic simulation. Stochastic 

simulation allows for parameter variability, parameter correlation, and sensitivity testing not available in the 

fixed-parameter specification. 
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(NASS) prices (2007a; 2007b) and distributional assumptions were verified with industry information 

when available. The stochastic simulation approach used in BioBreak allows us to capture the large 

variability in the research estimates for model parameters. The program results discussed in the 

following section are based on the mean values from stochastic simulation.  

For the long-run price of oil, we chose to evaluate scenarios rather than specify a distribution 

or a single value. The price of oil is variable and determines the price of ethanol in BioBreak. In July 

2008, the price of oil escalated to $145 per barrel but dropped to $30 per barrel in December 2008. 

This analysis considers three long-run oil price scenarios: $50 per barrel, $100 per barrel, and $150 

per barrel. Similarly, technological uncertainty of cellulosic ethanol production provides a range of 

estimates for the ethanol conversion ratio. Based on the range of conversion ratios reported in the 

literature (see Appendix Table B.2.1), a biomass-to-ethanol conversion ratio with mean value of 70 

gallons per dry ton is assumed to be representative of current and near future technology. At the 

assumed baseline conversion rate of 70 gallons per dry ton and an annual capacity of 53.4 mmgy, the 

biorefinery will process approximately 771,750 tons of feedstock per year or 2,205 dry tons per day 

assuming an online time of 350 days per year. The impact of an increase in the mean conversion ratio 

to 80 gallons per dry ton is considered within the sensitivity analysis. Appendix B.1 provides a brief 

summary for each of the model parameter assumptions including parameter distribution assumptions, 

and Appendix B.2 provides summary tables with literature estimates used to develop distribution 

assumptions. 

For comparison purposes, we specify a “baseline” scenario and provide sensitivity results 

relative to the baseline scenario. The baseline scenario consists of no fiscal policy incentives for 

biofuel production including no tax credits or payment programs, a long-run oil price of $100 per 

barrel, and a conversion rate of 70 gallons per dry ton of feedstock. 
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3.4.1 Baseline results 

Given the parameter distribution assumptions, the supply cost for the last short ton of biomass 

delivered to the local biorefinery ranges between $72 per ton for wheat straw in the PNW to $130 per 

ton for switchgrass grown on high quality Midwest cropland.
41

 Table 3.1 provides the long-run SC for 

biomass delivered to the local refinery for all 14 local feedstock markets considered in this analysis.
42

 

Stover harvested from Midwest cropland in continuous corn production is significantly more 

expensive than stover harvested from land in a corn-soybean rotation. The benefit of a smaller 

biomass supply region from continuous corn production, that is, lower transportation costs, is more 

than offset by the lost net returns from switching from a corn-soybean rotation to continuous corn. 

Local market characteristics also play a significant role. Switchgrass and Miscanthus grown on high 

quality Midwest cropland have relatively high costs due to high land opportunity costs and lower 

yields relative to the same feedstock grown in the Appalachian and South Central regions. 

For the 14 feedstock/regions considered in this analysis, long-run cellulosic ethanol 

production is not sustainable without significant government intervention in the baseline scenario. As 

shown in Table 3.1, the long-run biomass supply cost (SC) exceeds the processor’s long-run derived 

demand price (DD) for all markets. The difference between the supply cost and derived demand price, 

denoted as the price gap, ranges from $57 per ton of wheat straw to $116 per ton of switchgrass 

grown on high quality Midwest cropland. The estimated price gaps represent the costs to sustain 

markets and are equivalent to a per gallon ethanol cost between $0.82 and $1.65.
43

  

  

                                                      
41

 Relative to other feedstocks, wheat straw grown in the Pacific Northwest has very low opportunity cost and 

nutrient replacement cost. Wheat straw also is assumed to be supplied from previously established stands, 

resulting in no establishment or seeding costs. 
42

 The parameter draws and calculations were repeated one thousand times resulting in one thousand values for 

SC, DD, and the price gap (SC – DD) for each scenario. The values reported are the mean values over the 

thousand calculations for each feedstock. 
43

 Estimates presented here are on a per gallon ethanol basis. The estimated price gaps for the baseline scenario 

are equivalent to a cost between $1.23 and $2.48 per gallon gasoline equivalent. 
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Table 3.1 – Supply cost, derived demand, and price gap for a 53.4 mgy biorefinery  
($ per ton feedstock) 

(Baseline scenario, 70 gal/dry ton, 2007$) 

 SC DD Price gap 

Stover (CC) $115 $13 $102 

Stover (CS) $89 $13 $76 

Stover/Alfalfa $89 $14 $75 

Alfalfa $115 $15 $100 

Switchgrass (MW HQ) $130 $15 $116 

Switchgrass (MW LQ) $124 $15 $109 

Switchgrass (App) $98 $15 $83 

Switchgrass (SC) $96 $15 $81 

Miscanthus (MW HQ) $112 $15 $97 

Miscanthus (MW LQ) $117 $15 $102 

Miscanthus (App) $103 $15 $88 

Wheat straw $72 $15 $57 

Farmed trees $87 $12 $75 

Forest residues $75 $12 $63 

Note: Reported SC, DD, and price gap estimates are mean 

values from BioBreak simulation.  
 

A step-wise supply curve can be derived from the SC results similar to the supply curves 

reported in the ALTF report (2009). Figure 3.2 presents a step supply curve based on the local 

feedstock markets considered in this analysis with the exception of alfalfa and stover/alfalfa. 

Figure 3.2 – Step biomass supply curve 
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3.4.2 Sensitivity analysis 

The breakeven values and resulting price gaps presented in Table 3.1 are sensitive to 

assumptions and parameters used in the analysis. In the following, we present sensitivity analysis 

relative to the baseline scenario for the price of oil, conversion technology, and current and potential 

policy incentives.  

Oil price  

The price of oil impacts both the processor’s DD price and feedstock SC. An increase in the 

energy price will increase biomass input costs but also increase the biofuel price or processor 

revenue. Over the range of oil prices considered in this analysis, a change in the price of oil has a 

relatively minimal impact (< 5%) on the biomass supplier’s nutrient replacement, harvest, and 

transportation costs. Compared to the baseline scenario ($100/barrel), the low ($50/barrel) and high 

oil cost ($150/barrel) scenario decrease and increase the long-run feedstock supply cost by 

approximately $4 per ton, respectively. Given the small magnitude of these impacts, sensitivity 

analysis will focus on the impact of the long-run price of oil on the processor’s DD price.  

Since the price of ethanol is tied directly to the price of oil, any increase in the price of oil 

results in a decrease in the price gap. The results in Table 3.1 are based on a long-run oil price of 

$100 per barrel. If the long-run expected oil price is $50 per barrel, the price gap increases to range 

between $138 and $196 per ton of biomass (Table 3.2, Column 2) ($1.97 - $2.80/gallon). At a long-

run oil price of $150 per barrel, cellulosic biofuel markets are sustained for stover (CS), stover/alfalfa, 

switchgrass (SC), wheat straw, farmed trees, and forest residues (Table 3.2, Column 3).  
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Table 3.2 – Price gap for a 53.4 mgy biroefinery by oil price, technology, and policy scenario  

($ per ton feedstock) 
(Baseline assumptions unless noted otherwise, 2007$) 

 Baseline 

($100 oil) 

$50 oil $150 oil 80 gal/ton 

conversion ratio 

Tax credit 

Stover (CC) $102 $182 $21 $92 $31 

Stover (CS) $76 $156 0 $66 $5 

Stover/Alfalfa $75 $156 0 $66 $5 

Alfalfa $100 $181 $20 $91 $30 

Switchgrass (MW HQ) $115 $196 $35 $105 $45 

Switchgrass (MW LQ) $109 $189 $29 $99 $38 

Switchgrass (App) $83 $164 $3 $74 $12 

Switchgrass (SC) $81 $161 $0 $71 $10 

Miscanthus (MW HQ) $98 $178 $17 $88 $27 

Miscanthus (MW LQ) $102 $183 $22 $92 $32 

Miscanthus (App) $89 $169 $8 $79 $18 

Wheat straw $57 $138 $0 $48 $0 

Farmed trees $75 $156 $0 $66 $5 

Forest residues $63 $143 $0 $54 $0 

Note: Price gap estimates censored below at $0. 
 

Given long-run oil price uncertainty, we also calculate the expected long-run oil price needed 

to sustain each biomass market or the oil price which eliminates the price gap. Without government 

incentives, the long-run oil price needed to sustain cellulosic ethanol markets ranges between $136 

per barrel for a wheat straw market in the PNW to $172 per barrel for switchgrass on Midwest 

cropland (Table 3.3, Column 1).  

Conversion technology 

 The baseline results assume a conversion ratio of 70 gallons per dry ton of biomass for all 

feedstocks, but conversion technological advances are expected to increase this ratio. An increase in 

the biomass conversion ratio increases the biorefinery net returns per unit of feedstock and decreases 

the price gap. Table 3.2 provides price gap sensitivity to the higher conversion ratio of 80 gallons per 

dry ton. Assuming $100 per barrel oil and the higher conversion ratio, the price gap decreases to 

range between $48 and $105 per ton (Table 3.2, Column 4).  
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Table 3.3 – Long-run oil price needed to sustain a biomass market for a 53.4 mgy biorefinery 

($ per barrel) 
 (Baseline scenario unless noted, 70 gal/dry ton, 2007$) 

 No policy incentive 

 

Tax credit 

 

Tax credit 

& CHST payment 

Stover (CC) $164 $120 $63 

Stover (CS) $147 $103 $47 

Stover/Alfalfa $147 $103 $47 

Alfalfa $163 $119 $63 

Switchgrass (MW HQ) $172 $128 $72 

Switchgrass (MW LQ) $168 $124 $68 

Switchgrass (App) $152 $108 $52 

Switchgrass (SC) $150 $106 $50 

Miscanthus (MW HQ) $161 $117 $61 

Miscanthus (MW LQ) $164 $120 $64 

Miscanthus (App) $155 $111 $55 

Wheat straw $136 $92 $36 

Farmed trees $147 $103 $47 

Forest residues $139 $96 $39 

 

Fiscal policy incentives 

Policy incentives to either biomass suppliers or biofuel processors will decrease the price gap. 

The impacts of two policy incentive scenarios on the baseline model results are considered. The first 

scenario maintains baseline assumptions and adds the $1.01 per gallon tax credit provided by the 

2008 Farm Bill to cellulosic biofuel producers. The second policy scenario includes the tax credit plus 

the biomass collection, harvest, storage, and transportation (CHST) matching payment up to $45 per 

ton of biomass also provided in the 2008 Farm Bill as part of the Biomass Crop Assistance Program. 

Even though the CHST payment program was written as a two-year program and the producer’s tax 

credit is up for renewal in December 2012, CHST payments and tax credits are treated in this 

illustration as if these are long-term policy incentives.
 

With a long-run tax credit and a long-run oil price of $100 per barrel, local biofuel markets 

are sustainable for wheat straw and forest residues (Table 3.2, Column 5). The remaining markets 

have a price gap between $5 and $45 per ton ($0.06-$0.64/gallon). Comparing the first and second 

column in Table 3.3, the tax credit has essentially the same impact as a $44 per barrel long-run oil 
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price increase. With a long-run CHST payment program in addition to the tax credit, the price gap is 

eliminated for all 14 markets in the baseline scenario ($100 per barrel oil).  

Waiver credits  

The results presented so far provide estimates of the economic costs to sustain local biomass 

markets without the availability of waiver credits, and therefore represent the cost to meet fully 

enforced cellulosic biofuel mandates. If the EPA revises the mandates and provides obligated parties 

the option to purchase waiver credits, the economic costs of meeting the RFS2 will be capped at the 

cost of purchasing waivers to fulfill volume requirements. The EPA offered waiver credits at a price 

of $1.56 per gallon in 2010 and $1.13 per gallon in 2011 (U.S. EPA, 2010; U.S. EPA, 2010). The 

waiver credit price for 2012 is significantly lower at $0.78 per gallon (U.S. EPA, 2012a) and 

obligated parties will not invest in cellulosic biofuel production unless their expected net losses are 

less than $0.78 per gallon.  

To evaluate the potential impact of revised mandates and availability of waiver credits, 

BioBreak provides output based on a trigger value set at the cost of purchasing waiver credits in lieu 

of production. If the estimated net losses fall below the trigger value, the program indicates the 

biorefinery would not operate since the obligated party would opt to purchase waiver credits in lieu of 

production.  

Table 3.4 provides estimates of per gallon net losses for each local market under three oil 

price scenarios. At the baseline long-run oil price of $100 per barrel and the 2012 waiver credit price, 

the purchase of waiver credits would be the cost-minimizing option over all feedstock and location 

combinations. At the 2011 waiver credit price ($1.56 per gallon), investment in biofuel production 

would be the cost-minimizing decision for the local biomass markets utilizing stover from a corn-

soybean rotation, a stover/alfalfa rotation, wheat straw, farmed trees, and forest residues. The 

purchase of waiver credits would be the cost-minimizing option over all other feedstock and location 

combinations. At a long-run oil price of $50 per barrel, the cost-minimizing option for all local 
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markets is to purchase waiver credits in lieu of production at any of the 2010 – 2012 waiver credit 

prices. On the other hand, production is the cost-minimizing option for all waiver credit prices at a 

long-run oil price of $150 per barrel.  

Table 3.4 – Net losses per gallon of cellulosic ethanol production 

(Baseline scenario unless noted otherwise) 

 $50 oil $100 oil  

(Baseline) 

$150 oil 

Stover (CC) $2.61
W 

$1.46
 W

 $0.31 

Stover (CS) $2.23
 W

 $1.08
W 

-$0.07 

Stover/Alfalfa $2.23
 W

 $1.08
W 

-$0.07 

Alfalfa $2.58
 W

 $1.43
 W

 $0.28 

Switchgrass (MW HQ) $2.80
 W

 $1.65
 W

 $0.50 

Switchgrass (MW LQ) $2.70
 W

 $1.55
 W

 $0.40 

Switchgrass (App) $2.34
 W

 $1.19
 W

 $0.04 

Switchgrass (SC) $2.31
 W

 $1.16
 W

 $0.01 

Miscanthus (MW HQ) $2.53
 W

 $1.39
 W

 $0.24 

Miscanthus (MW LQ) $2.61
 W

 $1.46
 W

 $0.31 

Miscanthus (App) $2.42
 W

 $1.27
 W

 $0.12 

Wheat Straw $1.97
 W

 $0.82
W 

-$0.32 

Farmed Trees $2.22
 W

 $1.08
W 

-$0.07 

Forest Residues $2.05
 W

 $0.90
W 

-$0.25 

Note: A negative value denotes a production process with positive long-run net returns.  
W

If available, waiver credits would be purchased in lieu of production at the 2012 cost of 

waivers ($0.78/gallon). 
 

Parameter variability 

As evidenced by the wide range in published estimates of cellulosic ethanol production costs 

and technology (see Appendix B.2), there is significant uncertainty in the cellulosic ethanol industry. 

To account for this uncertainty, we used the stochastic feature provided by BioBreak which allows 

users to specify model parameter distributions rather than point estimates. Figure 3.3 provides a 

visual depiction of the sensitivity of the net losses per gallon of ethanol to the distributional 

assumptions. The 90% confidence intervals in Figure 3.3 are constructed based on the 5
th
 and 95

th
 

percentile draws in the BioBreak Monte Carlo simulation. 
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Figure 3.3 – 90% confidence interval for net losses per gallon of cellulosic ethanol production  

 
 

3.4.3 Comparison with previous literature 

With mandated cellulosic biofuel production and uncertainty regarding the feedstock supply 

system, a large body of literature has provided estimates of the costs or impacts of commercial-scale 

biomass supply. Biomass cost estimates vary based on model assumptions including biorefinery size, 

location, land quality, and cost aggregation, for example farm-gate or delivered. While some studies, 

such as the BioBreak program, break down each cost component, others focus on the market impacts 

of biomass supply and assume biomass cost values based on previous literature. Table 3.5 provides a 

comparison of the baseline SC value to the range of values presented in the literature. Since the 

underlying assumptions vary by study, Appendix B.3 provides a summary table of literature estimates 

and corresponding assumptions. The baseline SC values fall in the upper range reported in the 

literature for most feedstocks with the exception of wheat straw. The literature ranges presented in 

Table 3.5 are based on the values reported in the literature and are not updated to a consistent dollar 

value. Due to differences in delivery and storage assumptions, energy costs, and biotechnology over 

time, the reader should use caution when comparing values across studies.  
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Table 3.5 – Comparison of baseline SC and values reported or assumed in literature 

 Literature range  
($/ton) 

Baseline SC 

Alfalfa 54-140 115 

Biomass/energy crops 10- >115 -- 

Miscanthus 24-212 103-117 

Grasses (mixed and native prairie) 40-854 -- 

Stover (including cobs) 20-120 89-115 

Straw (including wheat straw) 27-60 72 

Switchgrass 23-486 96-130 

Wood 10-91 75-87 

   

Table 3.6 compares the baseline SC values to three studies published in 2010. Jain, Khanna, 

Erickson, & Huang (2010) derive switchgrass and Miscanthus farm-gate breakeven prices (i.e., 

excludes transportation) across Midwest states using an integrated biophysical model. The authors 

evaluate a low and high cost scenario for each state based on different levels of establishment ease, 

nutrient requirements, harvesting costs, and dry matter loss. In the low cost scenario, the Miscanthus 

farm-gate breakeven price ranges between $48 and $139 per dry ton while the switchgrass farm-gate 

breakeven ranges between $80 and $144 per dry ton. In the high cost scenario, Miscanthus and 

switchgrass farm-gate breakeven prices range between $77 - $212 and $107 - $171 per dry ton, 

respectively. Removing transportation-related costs, the baseline farm-gate SC values derived from 

BioBreak for Miscanthus ($99) and switchgrass ($107 - $109) grown in the Midwest fall within the 

estimated range for both the low and high cost scenarios in Jain et al. (2010).  

The second paper, James et al. (2010), derives the breakeven price to make six biomass 

feedstocks competitive with continuous corn production in the Great Lakes region. The breakeven 

price (sensitivity range) that would make the feedstock equally profitable to continuous corn 

production is $104 per ton ($41 - $167) for switchgrass, $180 per ton ($161 - $198) for Miscanthus 

using current technology, $40 per ton ($24 - $60) for Miscanthus assuming a significant rhizome cost 

reduction, and $98 per ton ($60 - $135) for poplar. The baseline SC values derived from BioBreak for 

switchgrass and Miscanthus on high quality land in the Midwest are $130 and $112 per ton while the 
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estimate for farmed trees is $87 per ton. These estimates fall within the corresponding breakeven 

range reported by James et al. (2010). 

Tyner, Brechbill, & Perkis (2010) provide best-guess estimates of the farm-gate feedstock 

costs for corn stover, switchgrass, Miscanthus, short-run woody crops, and forest residues. Reported 

farm-gate feedstock costs were between $50 - $70 per dry ton for corn stover, $65 - $85 per dry ton 

for switchgrass, $60 - $80 per dry ton for Miscanthus, $50 - $60 per dry ton for short-run woody 

crops, and $45 per dry ton for forest residues (Tyner, Brechbill, & Perkis, 2010). The baseline farm-

gate SC values derived from BioBreak are above or on the upper end of the range reported by Tyner, 

Brechbill, & Perkis (2010) with the exception of forest residues. We are unable to determine the 

source of the discrepancy between the baseline SC values and those reported by Tyner, Brechbill, & 

Perkis (2010) for most feedstocks as the authors do not provide details regarding their cost 

assumptions. One discrepancy we can address is the difference in the corn stover cost estimates. 

Tyner, Brechbill, & Perkis (2010) argue opportunity cost should not be included in corn stover costs 

since it is a byproduct of corn production. While we do not include an opportunity cost for stover 

from a corn-soybean rotation, we do for stover from continuous corn production equal to lost profits 

for switching from a corn-soybean rotation. This explains why the baseline farm-gate SC value for 

corn stover from land in a corn-soybean rotation ($67) falls within the range estimated by Tyner, 

Brechbill, & Perkis (2010), but the baseline estimate of stover from continuous corn production is 

higher than their reported range.  
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Table 3.6 – Comparison of baseline biomass SC values to three 2010 publications 

 Jain et al. (2010)
a 

Farm-gate 
James et al. (2010) 

b 
Tyner et al. (2010) 

Farm-gate 
Mean baseline SC  

(Farm-gate) 

Stover 

--  

-- 

$50-70 

$89-$116  

($67-97) 

Miscanthus $48-139 (low) 

$77-212 (high) 

$180 (current)  

$40 (future) 

$60-80 

 

$102-115  

($89-99) 

Switchgrass $80-131 (low) 

$107-171 (high) 

$104 $65-85 

 

$93-128  

($77-109) 

Farmed trees -- $98 (poplar) $50-60 $86 ($68) 

Forest residues -- -- $45 $73 ($38) 
a
Jain et al. (2010) estimates are for Midwestern states only. 

b
Values presented for James et al. (2010) are the reported ‘baseline’ values.  

3.5 Implicit carbon price 

The results from BioBreak can also be used to calculate an implicit carbon price embodied in 

cellulosic biofuel. Reducing greenhouse gas (GHG) emissions by substituting cellulosic biofuel for 

conventional fuel is frequently discussed as justification for cellulosic biofuel policies. In particular, 

provisions in the RFS2 outline minimum GHG reduction standards for each type of biofuel relative to 

2005 gasoline or diesel. In terms of market failure theory, cellulosic biofuel creates social benefits 

external to producers’ and consumers’ decision processes. Producers and consumers will realize the 

full costs of cellulosic biofuel production and consumption, but they do not consider the social value 

of reduced GHG emissions from biofuel.
 44

 As a result, biofuel production would be lower than the 

socially optimal level, that is, below the quantity where the added benefits equal the added costs, 

unless producers and consumers are forced by mandates or receive an incentive to internalize GHG 

benefits. 

We extend an economic model of a biofuel blending mandate to develop a measure for the 

carbon tax that would induce production of mandated cellulosic biofuel volumes if conventional fuel 

producers were taxed based on GHG emissions relative to cellulosic biofuel. This carbon tax, which 

represents the per unit cost of reduced GHG emissions from substituting cellulosic ethanol for 

                                                      
44

Although biofuels also produce GHG emissions (i.e., externality-producing output), with multiple activities 

generating externalities the socially optimal solution may result in “substituting more of a slightly polluting 

activity for another that is highly damaging” (Baumol & Oats, 1975, p. 98).  
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conventional fuel, could be interpreted as the value of reduced GHG emissions embodied in cellulosic 

ethanol. By combining BioBreak price gap estimates with data on GHG emissions reduction, we 

compute the cost of GHG emissions reduction implied by mandated biofuel production.  

3.5.1 Economic model of cellulosic biofuel blend mandate 

We extend the graphical framework by de Gorter & Just (2009b) for a transportation fuel 

sector with a biofuel blending mandate to include cellulosic biofuel production. For simplicity, all 

domestic cellulosic biofuels are represented by a single supply curve, SCB.
45

 Following the argument 

of Babcock, Marette, & Tréguer (2011), cellulosic biofuel expansion is not assumed to displace first-

generation biofuels, such as corn ethanol, but rather compete with all transportation fuels since 

“owners of existing conventional biofuel plants will continue to operate their plants if it is profitable 

to do so” (pg. 715).
46

 As a result, competing transportation fuels can be represented by a single supply 

curve SF. Since conventional gasoline provides the dominate portion of the competing transportation 

fuel, this class of fuels will be referred to as ‘conventional fuel’ for the remainder of the model 

discussion. Domestic market demand is represented by a single curve DF where cellulosic biofuel and 

conventional fuel are assumed to be perfect substitutes in consumption on an energy equivalence 

basis.  

The appropriateness of perfect consumption substitutability between ethanol and 

conventional fuel warrants additional explanation. As mentioned in Section 3.3, perfect consumption 

substitutability between ethanol and gasoline may be a realistic assumption for low level blends of 

ethanol, such as 10 or 15 percent, and for E85 in flex fuel vehicles but may not be a logical 

assumption for differentiated products (de Gorter & Just, 2009a; 2009b). Substitutability of ethanol 

                                                      
45

 Cellulosic biofuel imports are not considered. Currently, imported cellulosic biofuel can be used to meet the 

undifferentiated portion of the RFS2 advanced biofuel mandate but does not qualify for the cellulosic biofuel 

mandate, the focus of this analysis.  
46

 Although corn ethanol also has a biofuel mandate under the RFS2, the impacts of corn ethanol policies have 

been widely studied and are outside the scope of this analysis. The reader should refer to the following papers 

for additional information regarding the welfare and market implications of corn ethanol policies: Babcock, 

Barr, & Carriquiry (2010), Babcock et al. (2011), Cui, Lapan, Moschini, & Cooper (2010), de Gorter & Just 

(2009b; 2009a), Lapan & Moschini (2009), and McPhail & Babcock (2008).  
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for gasoline will also be limited by the blend wall. E85 has the potential to partially alleviate the 

blending wall constraint, but lack of refueling infrastructure has created limited demand for E85 

relative to the flex-fueled fleet and below the supply potential of the ethanol industry. Babcock, 

Marette, & Treguer (2011) depict the blend wall through an inelastic demand curve for ethanol. 

Additional reductions in the regulatory limit on ethanol blends, say to 20% as proposed by the corn 

and ethanol industries, or an increase in U.S. ethanol exports, could increase the elasticity of market 

ethanol demand (Babcock, Marette, & Treguer, 2011).
47

 Within the framework considered in this 

analysis, the blend wall could be incorporated through a cap on the maximum allowable (or 

mandated) blend of ethanol in transportation fuel. 

Given the model and market assumptions, Figure 3.4 represents the competitive 

transportation fuel market without cellulosic biofuel mandates. A high cost of cellulosic biofuel 

production results in zero cellulosic biofuel production in equilibrium and the entire equilibrium 

quantity of fuel (   ) is met by conventional fuels at the market clearing price    . 

Figure 3.4 – Transportation fuel market without cellulosic biofuel mandate 

 

                                                      
47

 Findings released in a May 2010 Renewable Fuels Association report (RFA, 2010b) suggest an increase in 

the ethanol export trend. First quarter 2010 ethanol exports were approximately five times higher than exports 

in first quarter 2009 and January through March 2010 exports equaled 71% of 2009 total exports. 
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To incorporate cellulosic biofuel mandates, consider a mandate on the share of total fuel 

consumption from cellulosic biofuel. The EPA provides annual blending percentage obligation for 

each type of biofuel computed as “the total amount of renewable fuels mandated to be used in a given 

year expressed as a percentage of expected total U.S. transportation fuel use” (Schnepf & Yacobucci, 

2010, p. 13). In 2012, the revised percentage of fuel required to come from cellulosic biofuel is 

0.006%, consistent with 10.45 million gallons. Using the RFS2 cellulosic biofuel mandate of 16 

billion gallons in 2022 and the January 2011 Energy Information Agency (EIA) estimates for 

transportation energy use in 2022, 16 billion gallons of cellulosic ethanol is approximately 7% of 

2022 transportation energy use by light-duty vehicles and commercial light vehicles. Let α represent 

the mandated share of total fuel consumption from cellulosic biofuel. In 2012, α = 0.00006 but by 

2022 mandate levels (if maintained), α could reach around 0.07.
48

 

The blend mandate in the transportation fuel market can be represented by a new supply 

curve for the mandated blend of cellulosic biofuel and conventional fuel, denoted as S
M

(α). This curve 

will be referred to as the ‘mandate fuel supply curve.’ The mandate fuel supply curve can be thought 

of as the price faced by a representative fuel consumer who is mandated to consume fuel in a fixed 

blend of α parts cellulosic biofuel and 1 - α parts conventional fuel. The price for each unit of 

mandated fuel mixture (PM) will equal the weighted price of cellulosic biofuel (PCB) and conventional 

fuel (PF) or         (   )  . Figure 3.5 shows the relationship between the cellulosic 

biofuel, conventional fuel, and mandated blended fuel supply curves for a hypothetical α.  

With the mandate fuel supply curve SM and market demand DF, the equilibrium price of fuel 

under the mandate is PM with conventional fuel price   
  and cellulosic biofuel price    

 . Since α 

represents the mandated fraction of total fuel consumption from cellulosic biofuels, the cellulosic 

biofuel demand curve is αDF. In Figure 3.5, equilibrium fuel price PM intersects the cellulosic biofuel 

                                                      
48

 The total renewable fuels mandate in 2022 is 36 billion gallons. At this volume, the blend wall may be 

reached, limiting the ability to meet the biofuel mandate. In this case, the “blend wall” percentage will act as a 

cap on the maximum mandated α. 
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demand curve at point B resulting in    
  gallons of cellulosic biofuel production. The price of 

cellulosic biofuel (   
 ) equals the marginal cost of cellulosic biofuel at the equilibrium quantity 

demanded (   
 ).  

As shown in Figure 3.5, a blend mandate on cellulosic biofuel when cellulosic biofuel 

production is otherwise uneconomical increases the equilibrium price of fuel from     to PM and 

decreases total fuel consumption from     to   .
49

 The magnitudes of the price and quantity 

changes depend on the elasticity of fuel demand with the price impact decreasing and quantity impact 

increasing as fuel demand becomes more elastic. Demand for fuel in Figure 3.5 is assumed to be 

relatively inelastic.  

Figure 3.5 – Transportation fuel market with cellulosic biofuel mandate (α) 

 

                                                      
49

 Total fuel consumption will decrease in all but the special case where demand for fuel is perfectly inelastic. 
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The biofuel mandate shifts a portion of the revenues previously possessed by conventional 

fuel producers to cellulosic biofuel producers. Consumers also raise per gallon revenues received by 

fuel producers by paying a higher fuel price. Appendix B.4 provides graphical depictions of the 

changes in costs and revenues to consumers and producers. In the next section, the model in Figure 

3.5 is used to identify the carbon tax needed to induce mandate-level production.  

3.5.2 Carbon price for mandate equivalent production  

Consider a carbon tax on conventional fuel producers above a baseline GHG emissions 

level.
50

 Assume the baseline level is set at the life cycle GHG emissions from cellulosic biofuel so 

that conventional fuel producers are taxed for each unit of GHG emissions above cellulosic biofuel. 

Let tC denote the carbon tax per unit of emissions and C be the emissions rate of conventional fuel 

above cellulosic biofuel.
51

 A carbon tax adds      to the cost of conventional fuel production. In 

Figure 3.6, a carbon tax is equivalent to a vertical shift in the conventional fuel supply curve equal to 

the tax payment per unit of fuel. The supply curve   
  represents an insufficient shift to make biofuel 

competitive without the mandate. With a high enough carbon price or emissions reductions, the 

carbon tax will shift the supply curve to the point where cellulosic biofuel production will occur 

without a mandate. The supply curve   
   represents the carbon tax needed for cellulosic biofuel 

production at the mandated production volume (   
 ).  

                                                      
50

 Under usual convexity assumptions, a carbon subsidy or payment to cellulosic biofuel producers for each 

GHG emissions reductions relative to conventional fuel would achieve the same desired result (Weitzman, 

1974). 
51

 C will vary by biofuel feedstock, cellulosic biofuel conversion process, and/or conventional fuel production 

process. For simplicity, C is shown as constant value in the graphical depiction. The variation in C is accounted 

for within the empirical application.  
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Figure 3.6 – Blend mandate equivalent carbon tax or credit

 
 

 The carbon emissions per gallon above cellulosic biofuel emissions (C), marginal cost of 

cellulosic biofuel (   
 ), and price of transportation fuel at the mandated biofuel volume [  (   

 )] 

can be used to calculate the carbon tax (  
 ) that would induce cellulosic biofuel production equal to 

the mandate volume if carbon taxes were used in lieu of mandates, or  

  
  

   
    (   

 )

 
. 

(5) 

The price derived in equation (5) can be interpreted as the value of emissions reductions implied by 

the cost to meet the cellulosic biofuel mandate. This calculation attributes the full cost of sustaining 

cellulosic ethanol production to GHG emissions reductions and does not consider other potential 

motivations for biofuel production, such as energy security, rural development, or trade balance. 

Therefore, this carbon valuation can be viewed as an upper limit on the valuation of carbon emissions 

reductions implied by the RFS2 mandate since any cost attributed to other motivations will reduce the 

price gap closed by the carbon tax. 
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3.5.3 Mandate equivalent implicit carbon tax/credit from BioBreak program results 

Results from BioBreak are used in conjunction with GHG emissions reductions to identify 

the carbon tax or price needed to sustain local cellulosic ethanol markets in the long-run. Per gallon 

price gap estimates from the BioBreak program provide estimates of (      ) under varying 

economic and policy conditions. Estimates of GHG emissions reductions are taken from the 

Greenhouse gases, Regulated Emissions, and Energy use in Transportation model (GREET 1.8d), an 

Excel-based program developed by the Center for Transportation Research at Argonne National 

Laboratory. GREET provides life-cycle GHG emissions for both conventional gasoline and 

feedstock-specific cellulosic biofuel (Wang, 2007). To provide a consistent analysis, default 

assumptions in GREET were adjusted to fit the feedstock, location, and technology assumptions used 

in the BioBreak application.
52

 The life-cycle GHG emissions reduction from replacing a unit of 

conventional fuel with cellulosic ethanol ranges between 64% and 77%.
53

 In terms of biomass 

feedstock, emissions are reduced between 0.40 and 0.49 metric ton of CO2 equivalents (mt CO2e) per 

ton of biomass used for cellulosic ethanol. These estimates provide a measure of the GHG emissions 

from conventional gasoline above cellulosic ethanol (C). For a baseline carbon price scenario, we use 

baseline BioBreak assumptions including $100 per barrel oil, 70 gallons ethanol per dry ton 

feedstock, and no policy incentives. Further, the biorefinery is assumed to operate with 2010 

technology for the GREET program. Since the timing of cellulosic ethanol market development is 

indeterminate, sensitivity of model results to biorefinery technology and ethanol fuel economy 

assumptions will be considered.  

 In the baseline scenario, the carbon price implied by the cost needed to sustain local 

cellulosic ethanol markets ranges between $141 and $280 per mt CO2e. Table 3.7 provides estimates 

                                                      
52

 One shortcoming of GREET 1.8d is the inability to adjust biomass yield assumptions. GHG emissions per 

mile used in this analysis were calculated using the GREET baseline yield assumptions for each feedstock. 
53

 The baseline scenario assumes 23.12 miles per gallon (mpg) fuel economy for 2010, equivalent to the 2010 

default value for E85 and conventional fuel vehicles in GREET. The average fuel economy for all passenger 

cars (used and new) was 22.6 mpg in 2008. In 2009, the CAFE standard was 27.5 mpg, but the average 

estimated fuel economy for new passenger cars was 32.6 mpg (BTS - RITA, 2010). 
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for the implicit carbon prices needed to sustain local cellulosic ethanol production under alternative 

oil price and technology assumptions. Any change in BioBreak model assumptions that increase the 

economic feasibility of cellulosic ethanol will decrease the carbon price needed to sustain markets. 

Similarly, any change in GREET model assumptions that increases emissions reductions from 

cellulosic ethanol relative to conventional gasoline will decrease the per unit carbon tax needed to 

sustain markets. If conditions are such that cellulosic ethanol is feasible without a carbon tax, the 

mandate is non-binding and the level of cellulosic ethanol production will be determined by the 

competitive market conditions.  

Table 3.7 – Implicit carbon price needed to sustain a biomass market for a 53.4 mgy biorefinery 

($/mt CO2e) 
(Baseline assumptions unless noted otherwise, 2007$) 

 $100 oil $50 oil $150 oil 80 gal/ton 

& 2020 biorefinery 

Tax credit 

Stover (CC) $211 $379
 
 $44 $165 $65 

Stover (CS) $157 $325
 
 $0 $119 $11 

Stover/Alfalfa $169 $349
 
 $0 $125 $10 

Alfalfa $246
 
 $444

 
 $48 $187 $73 

Switchgrass (MW HQ) $280
 
 $475

 
 $84 $216 $109 

Switchgrass (MW LQ) $264
 
 $459

 
 $69 $203 $91 

Switchgrass (App) $201
 
 $396

 
 $7 $150 $30 

Switchgrass (SC) $195
 
 $390

 
 $0 $145 $25 

Miscanthus (MW HQ) $236
 
 $431

 
 $42 $180 $64 

Miscanthus (MW LQ) $247 $442
 
 $53 $189 $76 

Miscanthus (App) $214 $409
 
 $20 $161 $44 

Wheat straw $141 $338
 
 $0 $99 $0 

Farmed trees $154 $319
 
 $0 $117 $10 

Forest residues $158 $359
 
 $0 $109 $0 

Note: Carbon price estimates censored below at $0. Life cycle emissions for ethanol based on E85 flex-fuel 

vehicle and 2010 biorefinery unless noted otherwise. 

 

At a long-run oil price of $50 per barrel, the implicit carbon price increases to range between 

$319 and $475 per mt CO2e (Table 3.7, Column 2). With $150 per barrel oil, several local cellulosic 

ethanol markets will be sustainable without carbon pricing, and for the other cellulosic ethanol 

markets, carbon prices range between $7 and $84 per mt CO2e (Table 3.7, Column 3). Finally, with a 

conversion ratio of 80 gallons per ton and 2020 GREET biorefinery technology, the implicit carbon 

price decreases to range between $99 and $216 per mt CO2e (Table 3.7, Column 4). Based on the 
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stochastic output from BioBreak, Figure 3.7 provides the 90% confidence interval for the implicit 

carbon price in the baseline scenario. Although not shown here, availability of waiver credits would 

place a cap on the implicit price of carbon.  

Figure 3.7. The 90% confidence interval for the implicit carbon price needed to sustain a 

biomass market for a 53.4 mgy biorefinery ($/mt CO2e) 
(Baseline assumptions, 2007$) 

 

3.5.4 Comparison of carbon price estimates with previous literature 

The upper range of the baseline carbon price estimates are consistent with a July 2010 

Congressional Budget Office (CBO) report which estimated a cost of $275 per metric ton to reduce 

GHG emissions through the cellulosic biofuel tax credit. Beyond the CBO report, the baseline carbon 

price estimates ($141 - $280 per mt of CO2e) are higher than most carbon prices assumed or 

estimated in previous literature. Brechbill & Tyner (2008b) estimate the price of carbon implied by 

the cost to replace 10% of total heat product in a coal power plant at $5.80 - $10 for corn stover and 

$14.50 - $15.20 for switchgrass. Schneider & McCarl (2003) evaluate the economic potential of 

biofuels in the GHG mitigation market and find biofuels are not competitive at a carbon price below 

$40 per ton but dominate all other agriculture mitigation strategies above $70 per ton. In a meta-

analysis of 211 estimates of the social cost of carbon, Tol (2008) found a modal value of $35, median 

value of $74, and average value of $127 per metric ton. Higher estimates were predominately from 
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gray literature. Other studies assume carbon prices between $0 and $160 when analyzing impacts of 

carbon markets or pricing, with sensitivity up to $500 per ton (Table 3.8).  

Table 3.8 – Carbon price estimates or assumptions within the literature  

Source Carbon price(s) 

Baker et al. (2010) $0-$50 

Beresteanu & Li (2011) $177 

Brechbill &Tyner (2008b) $5.80-$10 (stover) 

$14.50-15.20 (switchgrass) 

de la Torre Ugarte et al. (2009) Up to $160 

de la Torre Ugarte et al. (2009) $80 

EPA (2006) $0-$60 

EPA cited by Golub et al. (2008) $50 

($1-$100) 

Gomes & Araujo (2009) $20, $50, $100 

Johnson (2006) $63 

Khanna (2008) $34 

McCarl & Schneider (2001) $0, $10, $50, $100, $500 

Murray et al (2005) $1, $5, $15, $30, $50 

Parry & Small (2005) $25  

($0.70 - $100) 

Schneider & McCarl (2003) $0-$500 (range analyzed) 

< $40 (no role for biomass) 

>$70 (biofuels dominate) 

Tol (2008) $35 (mode) 

$74 (median) 

$127 (average) 

Updegraff, Baughman, & Taff (2004) $7  

($1.22 - $44) 

Compared to other policy programs implemented to reduce carbon emissions, cellulosic 

ethanol production has similar costs per unit of emissions savings. Since 2000, the U.S. government 

has supported hybrid vehicle consumption through federal income tax deductions (before 2006) and 

federal income tax credits (since 2006). Beresteanu & Li (2011) estimated the cost of CO2 emissions 

reduction through the hybrid vehicle federal income tax credit program at around $177 per ton in 

2006. In the summer of 2009, subsidies were granted to car owners who traded in old, fuel inefficient 

vehicles to purchase new and more efficient vehicles, commonly referred to as the ‘Cash-for-

Clunkers’ program. Li, Linn, & Spiller (2011) estimated the Cash-for-Clunkers program reduced CO2 

emissions at a cost of $91 to $288 per ton. 
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3.6 Conclusions 

The RFS2 requires cellulosic biofuel be part of the liquid transportation fuel mix, with a 

minimum annual use of 16 billion gallons of cellulosic biofuel by 2022. Available knowledge 

regarding costs of producing cellulosic biomass and converting it to cellulosic biofuel is largely based 

on engineering estimates and experimental trials. At the same time, previous literature has overlooked 

market conditions required for the development of second-generation biofuel markets (Babcock, 

Marette, & Treguer, 2011). The BioBreak program was developed to evaluate the economic 

feasibility of local cellulosic ethanol markets under different economic and policy environments. For 

uneconomical markets, BioBreak provides estimates of the price gap that needs to be closed to sustain 

local markets and meet mandated production levels.  

An application to 14 potential markets found cellulosic ethanol markets are not likely to 

achieve long-run breakeven without significant government intervention or higher long-run oil prices. 

The gap between the supply price and derived demand price ranges from $57 to $115 per ton of 

feedstock, or equivalently, $0.82 to $1.65 per gallon cellulosic ethanol. Additional policy incentives 

or high long-run oil prices significantly reduce price gaps and result in economical long-run biofuel 

production. The economic costs of biofuel production identified from the BioBreak application are 

higher than frequently anticipated
54

 and raise questions about the potential of cellulosic ethanol as a 

sustainable and economical substitute for conventional fuels.  

If we interpret the price gap in the absence of government incentives as reflecting the cost of 

carbon savings associated with each gallon of cellulosic ethanol, we can derive the implicit price per 

unit of carbon equivalent savings from mandating cellulosic biofuel production. This approach would 

imply a carbon equivalent cost between $141 and $280 per metric ton, higher than most carbon prices 

                                                      
54

A subset of the literature that falls within this category includes: Aden (2008), Aden et al. (2002), Brechbill & 

Tyner (2008a), Brechbill & Tyner (2008b), de La Torre Ugarte et al. (2003),Epplin & Haque (2011), Epplin et 

al. (2007), Graham et al. (2007), Huang et al. (2009), Khanna & Dhungana (2007), Mapemba et al. (2007),  

Mapemba et al. (2008), McLaughlin et al. (2002), McLaughlin et al. (2006), Perlack & Turhollow (2002), 

Perlack & Turhollow (2003), Petrolia (2008), Popp & Hogan (2007), Sheehan et al. (2004), Vadas et al. (2008), 

and Wallace et al. (2005).  
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discussed in the literature, but within the range of costs from other U.S. policies implemented to 

reduce GHG emissions.  
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CHAPTER 4. CELLULOSIC BIOFUEL SUPPLY WITH HETEROGENOUS 

BIOMASS SUPPLIERS: AN APPLICATION TO SWITCHGRASS-BASED 

ETHANOL 

 

A modified version of the chapter to be submitted to a peer-reviewed journal 

 

Abstract 

The potential of biomass for alternative energy production has attracted considerable attention 

because of associated implications for energy security, food supply, and climate change. This chapter 

considers the economic impacts of spatial variation and landowner behavior on potential biomass 

supply for U.S. cellulosic biofuel. To examine these impacts, we develop and apply a long-run 

biomass production through bioenergy conversion cost model that incorporates heterogeneity of 

biomass suppliers within and between local markets. In an application to U.S. switchgrass-based 

cellulosic ethanol production, we find cost-minimizing biofuel production decisions, which include 

biorefinery size, biomass transportation distance, and price of biomass, vary significantly across 

locations. We develop an aggregate switchgrass ethanol supply curve from the cost-minimizing local 

biorefinery capacities and production costs to evaluate the potential for and cost of achieving 

cellulosic biofuel production targets such as the revised Renewable Fuels Standard (RFS2) mandates. 

Switchgrass-based ethanol could satisfy the 2016 RFS2 cellulosic biofuel mandate of 4.25 billion 

gallons per year at a cost of $3.52 per gallon ethanol ($5.30 per gallon gasoline equivalent). By 

accounting for observed heterogeneity in potential biomass suppliers within and between local 

markets, we trade-off economies in biomass production, transportation, and conversion not previously 

obtained. Empirical results suggest spatial variation in the economics of biomass production plays an 

important role in the potential supply and distribution of U.S. cellulosic biofuel production.  

 

4.1 Introduction 

Unstable energy prices and concern about the environmental impacts of growing greenhouse-

gas (GHG) emissions have increased interest in finding alternative sources of energy. The use of 

biomass, a renewable and potentially GHG-reducing energy source, has gained significant attention 

and political support in the United States. In addition to allocating federal funds to bioenergy research 

projects, the United States has imposed mandates and provided market incentives to stimulate 

bioenergy production and consumption. The revised U.S. Renewable Fuel Standard (RFS2) took 
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effect July 2010 and mandates a minimum contribution from cellulosic biofuel – the form of 

bioenergy considered in this chapter – to the U.S. transportation fuel mix through 2022. Several 

biomass-to-biofuel conversion methods exist, but the economics of cellulosic biofuel production has 

limited industry development. The first commercial scale cellulosic biorefinery isn’t expected to be 

operational until 2013.
55

   

The amount of biomass that must be supplied for commercial scale production presents a 

significant challenge to industry development. A national biomass market does not exist and is 

unlikely to develop given the high costs of biomass transportation (Babcock, Marette, & Treguer, 

2011).
56

 As a result, cellulosic biorefineries will rely on local biomass markets for feedstock supply. 

The quantity and price at which potential biomass suppliers are willing and able to supply biomass to 

a biorefinery will vary both between and within local markets. Between markets, the amount of 

sustainable biomass production varies due to geographical and climate differences. Within local 

markets, potential suppliers differ in their perceived costs and benefits of biomass production even 

with relatively uniform production conditions (Bergtold, Fewell, & Williams, 2011; Tyndall, 2007; 

Tyndall, Berg, & Colletti, 2011; Hipple & Duffy, 2002; Wen, Ignosh, Parrish, Stowe, & Jones, 2009; 

Altman, Bergtold, Sanders, & Johnson, 2011).  

This chapter evaluates the economic trade-offs faced by commercial-scale cellulosic biofuel 

production that result from spatial variation and landowner heterogeneity in potential biomass supply. 

We begin with a theoretical long-run cost model, or supply model, from biomass production through 

bioenergy conversion that incorporates biomass supplier heterogeneity within and between local 

markets. A primary contribution of this chapter is the treatment of local biomass supply within the 

                                                      
55

 The 25 million gallon cellulosic ethanol plant proposed by POET for Emmetsburg, Iowa is expected to be the 

first commercial scale cellulosic biorefinery. The Emmetsburg biorefinery was originally scheduled to be 

completed and operational by 2011 but faced several setbacks, including a delay in the government loan. Only 

pilot-scale plants are in operation.  
56

 Babcock, Marette, & Treguer (2011, p. 717)  note one potential exception is the development of a “spatially 

integrated market for treated feedstocks” if a pretreatment technique for feedstocks is created to significantly 

increase feedstock value and density. A recent effort to develop a commoditized feedstock market for biomass 

is the Biomass Commodity Exchange (BCEX), http://www.biomasscommodityexchange.com/.  
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theoretical model of cellulosic biofuel production cost. While previous literature has assumed the 

fraction of local landowners willing and able to participate in biomass supply is fixed and 

independent of the price of biomass, we incorporate a functional relationship between the rate of 

landowner participation and the price of biomass. We hypothesize that accounting for these location-

specific functional relationships will result in significant variation in the cost-minimizing production 

decisions across locations which, ultimately, have important impacts on the potential supply, 

distribution, and economics of cellulosic biofuel. To test this hypothesis, the theoretical model is 

applied to switchgrass-based ethanol production in the United States using biofuel processing costs, 

switchgrass production costs, and offers submitted nationally for enrollment in the Conservation 

Reserve Program (CRP). The CRP offers data, which provides revealed information on landowner’s 

willingness to forgo current agricultural production in exchange for an annual fixed payment, is used 

to identify heterogeneity in the opportunity cost of potential dedicated biomass cropland within each 

region that, to our knowledge, has not been done before. Data are incorporated into a non-linear 

mathematical programming model to determine the cost-minimizing production decisions – including 

biorefinery size, capture region distance, feedstock price, and average cost of cellulosic ethanol 

production – for each potential biorefinery location. The estimated local ethanol supplies are 

combined to generate an aggregate ethanol supply curve. The resulting supply curve is used to 

evaluate the economic trade-offs that exist as a result of spatial variation and landowner heterogeneity 

as well as the potential for and costs to meet the RFS2 cellulosic biofuel mandates.  

The chapter is organized as follows. The next section discusses the economic trade-offs in 

cellulosic biofuel production that differentiates it from petroleum-based transportation fuel and first-

generation biofuel production (e.g., corn ethanol, soybean biodiesel). Section 4.3 presents the 

theoretical model for cellulosic biofuel production cost with heterogeneous biomass suppliers. 

Section 4.4 describes the empirical specification and data used in the application of the theoretical 

model to U.S. switchgrass-based ethanol production. Results, including sensitivity analysis, are 
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presented in Section 4.5. Section 4.6 concludes with a discussion of model implications, policy 

relevance, and future extensions in this area of research.  

4.2 Cost structure for cellulosic biofuel production  

The cellulosic biofuel industry has a different cost structure than petroleum-based 

transportation fuel or first-generation biofuel. Petroleum-based industries realize economies in scale 

in processing but do not have or realize any scale economies in feedstock procurement (i.e., average 

feedstock costs are independent of plant size). Processing economies, up to a point, lead to large-scale 

petroleum-based refineries (Wright & Brown, 2007; Searcy & Flynn, 2009).
57

 By operating within 

local feedstock markets, biofuel producers face a trade-off between economies of scale in biofuel 

processing and diseconomies of scale in feedstock procurement. First-generation biorefineries use 

commoditized feedstocks with a market price (e.g., corn, soybeans). The increase in feedstock 

demand from a larger capacity first generation biorefinery is met by paying the market price for 

additional feedstock located farther from the biorefinery and paying a greater transportation cost. The 

trade-off between economies of scale in processing and diseconomies of transportation results in a 

cost-minimizing combination of feedstock transportation distance and biorefinery capacity. This cost-

minimizing combination is independent of the market price of feedstock (Searcy & Flynn, 2009).
 58

 

As explained in more detail in the next paragraph, this modeling framework is not representative of 

the cellulosic biofuel industry. Therefore, the model we develop for cellulosic biofuel production will 

relax the independence assumption and allow the cost-minimizing decisions to depend on the price of 

feedstock. 

Cellulosic biorefineries use a non-commoditized feedstock, making their economic trade-offs 

more complex. The biorefinery’s cost-minimizing decisions depend on the offered price of biomass. 

                                                      
57

 In this chapter we do not differentiate between economies of scale and economies of size and use the term 

“economies of scale” to represent decreasing per unit cost of production with capacity. See Hallam (1991) for 

definitions and a discussion of the differences between and measures of economies of scale and size. 
58

 This relationship will be shown in detail in Section 4.3.4.  
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The fraction of land allocated into biomass production will be determined by the fraction of land for 

which the offered price of biomass covers all costs incurred from biomass production, including 

opportunity costs. We refer to this fraction as the “participation rate” for biomass supply. The 

relationship between the participation rate and price of biomass adds complexity to the cost structure 

of biomass procurement. 

To illustrate the economic trade-offs involved in biomass procurement, a simplified example 

is outlined in Figure 4.1. Consider a potential biorefinery that plans to offer biomass suppliers a price 

P0 per ton of biomass, and suppose the participation rate within the local market is d0 at the biomass 

price P0. Given d0, let r0 denote the radius of the circular capture region needed to satisfy feedstock 

demand if the biorefinery builds a biorefinery with capacity Q0 gallons per year (Figure 4.1a). Now 

suppose the biorefinery recognizes there are economies of scale in biofuel processing and considers 

building a different capacity, Q1, where Q1 > Q0. The increase in feedstock demand from the larger 

capacity cellulosic biorefinery can be met in one of three ways. First, the biorefinery can maintain the 

offered price of biomass P0 and the participation rate d0 and satisfy the increase in feedstock demand 

by contracting additional feedstock located farther from the biorefinery. The larger capture region is 

depicted in Figure 4.1b by radius r2 > r0.
59

 Second, the biorefinery can maintain the size of the capture 

region (r0) but increase the participation rate within the local market to d2 > d0 through an increase in 

the price offered for feedstock to P2 > P0. Third, the biorefinery could use a combination of both. 

Although a continuum of combinations are feasible, Figure 4.1b illustrates one possible combination 

with radius r1 (where r0 <  r1 <  r2), price of biomass P1 (where P0 < P1 < P2), and participation rate d1 

(where d0 <  d1 <  d2). Any of the three methods to satisfy feedstock demand for a larger biorefinery 

increases average feedstock cost, resulting in diseconomies of feedstock procurement. This economic 

trade-off between economies of scale in cellulosic biofuel processing and diseconomies of scale in 

                                                      
59

 An implicit assumption here is that potential biomass suppliers farther from the biorefinery have the same 

supply responsiveness or willingness to participate as potential biomass suppliers located close to the 

biorefinery.  
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feedstock procurement leads to cost-minimizing biofuel production decisions that are location 

dependent and include biorefinery size, biomass transportation distance, and also the price of 

feedstock.  

Figure 4.1 – Three possible participation rate and capture region combinations that satisfy an 

increase in feedstock demand associated with an increase in biorefinery capacity 
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The theoretical model presented in the next section incorporates these economic trade-offs 

into a cellulosic biofuel long-run production cost model. To our knowledge, this is the first analysis to 

explicitly incorporate this relationship into a production cost model for cellulosic biofuel; however, 

previous literature has recognized the existence and importance of this relationship. Leboreiro & 

Hilaly (2011, p. 2713) note landowner participation rate in biomass supply is “a strong function of the 

economic incentive,” but proceed in the convention of previous literature
60

 by assuming fixed values 

for the participation rate and economic incentive (i.e., supplier payment) and then conducting 

independent sensitivity analysis to changes in the fixed values.  

4.3 Theoretical framework: long-run cellulosic biofuel production cost 

The theoretical framework presented here builds on a growing body of literature that 

considers the production capacity choice of a potential biorefinery prior to capital investment.
61

 The 

biorefinery is assumed to minimize the long-run total cost per unit of biofuel production (C) by 

choosing the production capacity and price of biomass to offer to local biomass suppliers, conditional 

on the biorefinery technology and local biomass supply conditions.
62

 A biorefinery’s total production 

cost is a function of its feedstock procurement costs (CF) and biofuel processing costs (CP).  

4.3.1 Feedstock procurement cost 

The per ton cost of feedstock procurement includes the price paid to local biomass suppliers 

(PF), storage cost (S), and transportation cost. The transportation cost per ton of feedstock is derived 

                                                      
60

 See Cameron, Kumar, & Flynn (2007b), Dornburg & Faaij (2001), Gan (2007), Gan & Smith (2010), Huang, 

Ramaswamy, Al-Dajani, Tschirner, & Cairncross (2009), Jenkins (1997), Kaylen, Van Dyne, Choi, & Blasé 

(2000), Kaylen, Van Dyne, Kumar, Cameron, & Flynn (2003), Nguyen & Prince (1996), Searcy & Flynn 

(2009), Searcy & Flynn (2010), and Wright & Brown (2007b).  
61

 A subset of the literature which examines biorefinery minimum efficient capacity includes: Cameron, Kumar,  

Cameron, Kumar, & Flynn (2007b), Dornburg & Faaij (2001), Gan (2007), Gan & Smith (2010), Jenkins 

(1997), Leboreiro & Hilaly (2011), Nguyen & Prince (1996), Searcy & Flynn (2009), and Wright & Brown 

(2007b). 
62

 Assuming cellulosic biofuel and conventional fuel are perfect substitutes in consumption on an energy 

equivalence basis and fuel markets are competitive, minimizing long-run average total cost (that is, the point 

where the long-run average total cost equals the marginal cost) yields the same solution as profit maximization. 
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by multiplying the per mile per ton transportation cost (t) by the capture radius (r).
63

 Equation (1) 

calculates the per gallon cost of feedstock procurement (CF) by dividing total per ton feedstock costs 

by the gallons of biofuel produced from each ton of feedstock, commonly referred to as the biofuel 

yield (YO).  

  (    )  
 

  
 [        (    )]       (1) 

The capture radius for a biorefinery operating with a capacity of Q gallons per year is derived from 

the methodology in French (1960) for a circular capture area with uniform biomass density: 

    √
 

       
         (2) 

where YB is the biomass yield per acre, d is the fraction, or density, of land allocated to biomass 

production within the region, and   is a conversion factor.
64

  

 Holding all other variables constant, an increase in biorefinery capacity will increase the 

capture radius and per unit cost of feedstock transportation (
  

  
  ). Conversely, an increase in the 

fraction of land allocated to biomass production will decrease the capture radius and per unit cost of 

feedstock transportation holding all other variables constant (
  

  
  ). Therefore, depending on the 

local biomass supply conditions, an increase in the fraction of land allocated to biomass supply could 

partially or fully offset the need to increase transportation distance to meet feedstock demand for a 

                                                      
63

 Capture radius is used as opposed to the average hauling distance to account for location or bid rents. In the 

long-run and assuming the biorefinery does not have monopsony power to price discriminate, biomass suppliers 

located closer to the biorefinery will receive location or bid rents regardless of which party is responsible for 

transportation. If biomass suppliers handle transportation and the biorefinery pays each supplier a fixed 

transportation payment per ton of biomass equal to the product of the variable transportation cost (t) and capture 

region radius (r), a biomass supplier located x miles from the biorefinery will receive location-specific benefits 

equal to   (   ) per ton. If the biorefinery handles transportation, the biomass supplier will receive an 

equivalent bid-rent value [i.e.,   (   ) per ton] by requiring a higher opportunity cost payment to supply 

biomass. The model presented here mirrors the grain industry and captures bid rents through the use of the 

capture radius to calculate the transportation cost for each unit of biomass. Sensitivity analysis will consider the 

potential for a biorefinery to price discriminate and capture transportation-related rents. 
64

 With the capture radius measured in miles and biomass yield measured per acre,   for a circular area is 

0.0223. The value for   will differ based on the transportation structure assumed (e.g., average hauling distance 

vs. capture radius, circular vs. square supply plane, road grid, etc.). 
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larger biorefinery. Landowners respond to price incentives and the fraction of land allocated to 

biomass production will be non-decreasing in the price of biomass. This relationship is captured in 

the procurement cost model through a location-specific function  (  ), where  
  (  )

   
  . We refer 

to  (  ) as the local participation rate function.
65

   

Incorporating equation (2) and the local participation rate function into equation (1) produces 

the following equation for the per gallon cost of feedstock procurement (CF): 

  (    )   
 

  
 [         √

 

       (  )
].    (3) 

4.3.2 Biofuel processing cost 

Biofuel processing costs arise in converting biomass into cellulosic biofuel and depend on the 

biorefinery technology and capacity. There are per-gallon costs that depend on biorefinery capacity 

and exhibit economies of scale (    ) and there are per-gallon costs that are independent of 

biorefinery capacity (    ). A power function is used to model biorefinery costs that exhibit 

economies of scale (Brown, 2003) and assumes the following relationship between the per-gallon cost 

at capacity Q0 and per-gallon cost at capacity Q1: 

      
       

 [
  

  
]
   

     (4) 

The scaling factor,    , represents the rate at which total cost increases with capacity, or 

equivalently,     represents the rate at which per-gallon cost changes with capacity.
66

 With 

economies of scale, k is strictly less than one. For a biorefinery with capacity Q, the power function 

for processing costs that exhibit economies of scale can be written as follows: 

                                                      
65

 Including the relationship between participation in feedstock supply and the price of biomass allows the 

biorefinery the flexibility to meet an increase in feedstock demand (increased Q) at least cost through 

transporting biomass from farther locations, increasing the biomass density (increased PF), or a combination of 

the two. 
66

 A more common, but equivalent, representation of the power function is:             
             

 

[
  

  
]
 

. 
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      (5) 

where      
 and k are exogenous, known variables and      

 represents per-gallon costs for a 

“baseline” biorefinery with capacity Q0. Assuming the biorefinery operates at annual capacity through 

the life of the plant, equation (5) and the biofuel processing costs independent of biorefinery capacity 

together imply the following expression for the per-gallon total cost of processing biofuels (CP):  

  ( )            
 [

 

  
]
   

     (6) 

4.3.3 Biorefinery objective function 

Combining equations (3) and (6), the objective function for the cost-minimizing biorefinery 

can be written as follows:   

   
    

    (    )     
    

             
 [

 

  
]
   

  
 

  
 [         √

 

       (  )
]  (7) 

where      
  (  )

   
      

 (  )  [   ]  

          

The trade-off between economies of scale in biofuel processing and diseconomies of 

feedstock procurement results in a cost function that is convex in Q and PF.
67

 The first order 

conditions with respect to capacity and price of feedstock lead to the following equation
68

: 

   [
  (  

 )

   
 

       
  (   )    

    

        
 (   ) ]

 

    

.    (8) 

Equation (8) requires specification of the participation rate function, d(PF), and can be solved using a 

non-linear mathematical programming model. 

                                                      
67

 The necessary and sufficient conditions for convexity are provided in Appendix C.1 and satisfied during 

estimation.  
68

 Derivation of equation (8) is provided in Appendix C.2.  
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4.3.4 Fixed biomass density approach: use and limitations 

The biorefinery’s problem has been simplified in previous literature by assuming the fraction 

of land allocated to biomass production and the price of biomass are fixed and independent of plant 

size. This approach assumes increased feedstock demand can only be met by traveling farther to 

acquire additional biomass, leading to a cost-minimizing capacity (equation 9) and capture radius 

(equation 10) that depend on an assumed fixed density value (dfixed) but are independent of the price 

of biomass (PF,fixed).
69

  

        
  [

        (   ) √  
           

      
   ]

 

    

.                 (9) 

        
    √

        
  

            
.      (10) 

With an endogenous participation rate [ (  )], the biorefinery’s long-run cost can be 

depicted as a surface graph plotted over a range of capacities and local participation rates (Figure 

4.2a). The solution to the biorefinery objective function is the capacity and local participation rate 

with corresponding price of biomass at the minimum of the cost surface. A fixed participation rate 

approach used in previous literature is equivalent to selecting and evaluating a ‘slice’ from the 

biorefinery cost surface at a fixed participation rate (Figure 4.2b). The biorefinery objective function 

is simplified to a single variable problem for the minimum efficient capacity (Q). Unless the fixed 

participation rate and price of biomass are set exactly at the cost-minimizing values from the cost 

surface, the estimated minimum cost of biofuel production and minimum efficient capacity will differ 

between an endogenous and fixed value analysis.  

  

                                                      
69

 Appendix C.3 provides the derivation of equations (9) and (10) along with a summary of the marginal 

impacts of model parameters on cost-minimizing biorefinery capacity and biomass hauling distance.  
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Figure 4.2 – Biorefinery cost function for a select location 

(a). Endogenous participation rate   (b). Fixed participation rate
70

  

          

The assumptions of a fixed biomass density and price provide a useful analytical 

simplification but at the sacrifice of an important economic relationship – potential biomass suppliers 

will respond to price incentives. Acreage supplied into biomass production should increase with the 

price of biomass. Recent survey results suggest that potential biomass suppliers respond as expected – 

the quantity of acreage willing to be allocated into biomass production increases with the price of 

biomass offered (Altman, Bergtold, Sanders, & Johnson, 2011; Menard, Jensen, Qualls, English, & 

Clark, 2011; Qualls, Jensen, English, Larson, & Clark, 2011). Landowners were also found be 

heterogeneous in their willingness to supply biomass even under relatively uniform production 

conditions (Bergtold, Fewell, & Williams, 2011; Jensen, et al., 2007; Tyndall, Berg, & Colletti, 

2011).
71

 These characteristics of local biomass markets lead to one of the basic hypotheses of this 

chapter: heterogeneity between and within local biomass markets will create economic trade-offs with 

important impacts on the potential supply, distribution, and economics of cellulosic biofuel. The 

rationale underlying this hypothesis is that heterogeneity will create significant variation in the cost-

minimizing production decisions across locations. To test this hypothesis, we apply the theoretical 

                                                      
70

 For construction of Figure 4.2b, the local participation rate and price of biomass were fixed at the values 

corresponding to the minimum point in Figure 4.2a.  
71

 Reasons for variation in willingness to participate in biomass supply within these surveys included, but was 

not limited to, operator age, environmental concerns, farming experience, market expectations, and opportunity 

cost of learning a new production process.  

0

0.05

0.1

0.15

0

50

100

3.75

3.8

3.85

3.9

3.95

4

Participation rate [d(P
F
)]Capacity (Q)

$
/g

a
llo

n
 e

th
a
n
o
l

20 30 40 50 60 70 80 90 100
3.7

3.75

3.8

3.85

Cost-minimizing Q

Capacity

$
/g

a
llo

n
 e

th
a
n
o
l



www.manaraa.com

87 

 

 

model to U.S. switchgrass-based ethanol production, relaxing the assumption of fixed biomass 

density and price.  

4.4 Estimation and data 

The data and empirical specification for application of the supply model to bioethanol 

production from switchgrass are presented in this section. Biorefinery locations considered include 

crop reporting districts (CRDs) located in rain-fed regions of the U.S.
72

   

4.4.1 Estimating local participation rate functions   

We derive the fraction of land allocated to biomass production in CRD j based on the 

following equation:  

  (  )           (    )      (11) 

where dA,j is the fraction of total land within district j physically suitable, or able, for biomass 

production and dS,j is the fraction of suitable land in district j economically sustainable in biomass 

production at a biomass price of PF,j. For baseline analysis, we follow previous literature and limit the 

acreage that can be converted into switchgrass production (Khanna, Chen, Huang, & Onal, 2011; 

English, et al., 2010; English, et al., 2006; U.S. DOE, 2011b; de la Torre Ugarte, Walsh, Shapouri, & 

Slinsky, 2003; Parker, Hart, Tittmann, & Jenkins, 2011). Acreage available for switchgrass 

production in CRD j (i.e.,     ) is limited to 25% cropland pasture, permanent pasture, failed 

cropland, and CRP acreage and 10% harvested cropland as determined by CRD land use data.
73

 

Sensitivity analysis will consider biofuel supply impacts from relaxing these assumptions.  

                                                      
72

 County-level land area was frequently insufficient to supply enough switchgrass for a commercial scale 

biorefinery. Rain-fed regions include the Northern and Southern Plains, Corn Belt, Lake States, Delta States, 

Southeast, Appalachia, and Northeast (Khanna, Chen, Huang, & Onal, 2011). 
73

 The updated Billion Ton Report (U.S. DOE, 2011b) allows up to 50% of permanent pasture, 50% of cropland 

pasture, and 25% of cropland to switch to biomass production in each county. Khanna et al. (2011) allow 25% 

of harvested cropland, idle cropland (mostly CRP acreage), and cropland pasture to convert into perennial grass 

production in each CRD. De la Torre Ugarte et al. (2003), English et al. (2006), and English et al. (2010) limit 

the transition of idle cropland and cropland pasture to bioenergy crops to 40% and 25%, respectively. Parker et 
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The fraction of available land supplied for biomass production (dS,j), or the landowner 

participation rate, will depend on the fraction of available land for which the price of biomass covers 

all costs incurred, including opportunity costs, from biomass production. Landowner i in district j will 

allocate land to switchgrass production if the price he receives for switchgrass is greater than or equal 

to the per acre net returns to the current land use plus the costs of switchgrass production.
74

 Letting 

POpp,j,i denote the landowner’s per-acre opportunity cost of biomass cropland and PSG,j,i denote the per-

dry ton cost of switchgrass production, the landowner will allocate land into switchgrass production 

only if 

     
        

      
               (12) 

The right-hand side of equation (12) represents the minimum per-dry ton price a landowner is willing 

to accept to allocate land into switchgrass production and will vary between landowners due to 

differences in POpp, YB, and PSG. In this application, YB and PSG are allowed to vary between local 

biomass markets but fixed within local markets (i.e.,              and               for all   in 

district j), while POpp,j,i is allowed to vary between potential suppliers within the same local biomass 

market. By limiting within-region supplier heterogeneity to differences in opportunity cost, variation 

in the local landowner participation rate (dS,j) depends only on the distribution of opportunity costs 

within the district. As a result, the local landowner participation rate in district j will only vary with 

the price paid by the biorefinery to cover landowner opportunity cost (      ) or 

            (      )  where  
     

       
       (13) 

Data of the quantity and opportunity cost of land likely to move into switchgrass production 

is needed to identify the true function     (      ) for each location. These data do not exist and so, 

in their absence, we use utilize information from Conservation Reserve Program (CRP) contract 

                                                                                                                                                                     
al. (2011) allow 25% and 50% of cropland idle and cropland pasture to convert to energy crop production for 

low and high assumptions, respectively. 
74

 The landowner’s decision is considered prior to investment in switchgrass production and therefore all 

switchgrass production costs, including establishment costs, are assumed variable.  
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offers. These data are unique in that they include all contracts offered, included those not accepted for 

enrollment. The CRP offers data provide information, including acreage quantities and offered rental 

rates, from landowners willing to forgo current agricultural production in exchange for an annual 

fixed payment.
75

 The dataset of CRP offers serves as revealed information on the heterogeneity in 

opportunity cost of potential dedicated biomass cropland within each region.
76

    

The CRP offers data used in this analysis are from the general signup 26, which occurred 

during 2003. General signups are characterized by a competitive offer-submission process. An offer 

submitted by a landowner includes the per-acre rental rate – the bid – at which the landowner is 

willing to idle his cropland from agricultural production and install one or more conservation 

practices for the next 10 years. If accepted, the landowner receives a fixed stream of payments at the 

bid rate for a 10-year period. General signup enrollments are typically whole field enrollments as 

opposed to buffers, filter strips, field streams, etc., which are largely enrolled in CRP continuous 

signup (Jacobs, 2010).
77

 We adjust the landowners’ bids from 2003 to make them comparable to the 

switchgrass production costs, which are in 2007 dollars, by applying a multiplicative factor equal to 

the CRD average increase in CRP rental rates between 2003 and 2007.
78

      

The CRP offers data provide the price at which a landowner is willing to idle crop production 

and put the land to a conservation cover. We use this information as a proxy for the price necessary to 

induce a production shift to an alternative use such as switchgrass production (i.e., POpp). For each 

CRD within a rain-fed region and with at least 20 offers to enroll in CRP general signup 26 (shown in 

Figure 4.3), a nonparametric kernel density estimator was used to construct a cumulative distribution 

                                                      
75

 A CRP offer is a “contract between a landowner and the United States Department of Agriculture (USDA) 

whereby the landowner proposes to idle from traditional agricultural production a parcel of land on which he 

will install certain conservation practices in exchange for an annual rental payment” (Jacobs, 2010, p. 195). 
76

 The authors gratefully acknowledge the USDA FSA and Economic and Policy Analysis Staff for access to 

the CRP data.  
77

 CRP continuous signup targets “the most degradation-prone, environmentally sensitive and marginally 

productive agricultural land” (Jacobs, 2010, p. 120). Therefore, these types of land are not included in the data 

used for our analysis.  
78

 A request for more recent CRP offers data or summary statistics for updating purposes has been submitted.  
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function (CDF) of the offered rental rates within the district weighted by acreage offered for 

enrollment.
79

 The fitted CDF provides an estimate of the fraction of offered land available at or below 

each per acre payment amount. As an example, Figure 4.4 provides the fitted CDF and corresponding 

probability density function (PDF) of offered rental rates per acre for a select district. We use the 

fitted CDF of CRP offers within each district as a proxy for the CRD-specific function     (      ). 

Therefore, the revealed information on landowner’s willingness to forgo current agricultural 

production in exchange for an annual fixed payment provided by the CRP offers data allows us to 

identify heterogeneity in the opportunity cost of potential dedicated biomass cropland within each 

region that, to our knowledge, has not been done before. 

Figure 4.3 – Rain-fed CRDs with at least 20 offers to enroll in CRP general signup 26  

 
                                                      
79

 The Epanechnikov kernel function, which is both efficient (i.e., minimizes the mean integrated square error) 

and computationally compact, is used to derive the fitted distribution functions (Silverman, 1986; Cameron & 

Trivedi, 2005). The rainfed regions include 243 of the 317 total CRDs. The number of CRDs reduces to 186 

when restricted to those with at least 20 offers to enroll in CRP general signup 26. Silverman (1986) argues at 

least 4 data points are needed for an accurate nonparametric estimate of a one variable distribution. Others have 

argued Silverman’s minimum values may be an underestimate. Therefore, we use a conservative cutoff value of 

20 based on the minimum data points suggested by Silverman for a two-dimensional distribution.  
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Figure 4.4 – Cumulative and probability density functions of CRP offers from a single district 

in general signup 26 

(a). CDF      (b). PDF   

  

We make two important assumptions to estimate the relationship between the participation 

rate and price of feedstock. First, we maintain the Khanna et al. (2011) assumption that yields are 

unaffected by soil quality within local markets and production costs (PSG) and yields (YB) are constant 

within each district. In actuality, production costs and yields may vary within local markets due to 

soil quality differences as well as differences in supplier experience, education, access to capital, etc. 

(Lichtenberg, 2002; Tyndall, Berg, & Colletti, 2011). We attempt to limit soil quality differences 

within regions by restricting the quantity and type of land able to shift into switchgrass production 

(that is, limit land types within dA). We capture soil quality differences by accounting for variation in 

POpp. Yet, by fixing PSG and YB within markets, biomass supplier heterogeneity is underestimated. 

Heterogeneity of PSG and YB within local biomass markets is something we hope to investigate in 

future research. However, underestimating supplier heterogeneity does not restrict us from achieving 

the primary analysis goal. We are not attempting to perfectly identify local biomass supply curves or 

the exact biorefinery locations, but rather are illustrating and evaluating the economic trade-offs and 

potential market impacts from biomass supplier heterogeneity between and within biomass markets. 

Capturing heterogeneity in land opportunity cost allows us to examine these effects.  
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Second, we assume the heterogeneity in CRP offers within each district can be used as a 

proxy for heterogeneity in opportunity cost of potential switchgrass cropland (POpp) within the 

district. We assert this is a reasonable assumption for several reasons. First, the stand length for 

switchgrass production is approximately 10 years, equivalent to the contract length for the general 

signup CRP. Therefore, the offers dataset contains revealed prices from landowners whose decisions 

to remove land from its current activity were based on a time frame consistent with a commitment to 

switchgrass production. Second, the CRP targets erodible and environmentally sensitive cropland 

(Mapemba L. , Epplin, Taliaferro, & Huhnke, 2007). Switchgrass was selected as the model 

bioenergy crop, at least in part, due to its relative productivity on marginal cropland (Wright & 

Turhollow, 2010). Third, switchgrass production provides many of the conservation benefits 

landowners might seek through CRP participation, such as reduced soil erosion and wildlife benefits 

(Mapemba L. , Epplin, Taliaferro, & Huhnke, 2007). Finally, it has been suggested that characteristics 

of switchgrass production may lead to contracts/relationships between a biorefinery and landowners 

similar to those between the government and CRP enrollees (Epplin, 2009). Without a dataset of the 

quantity and opportunity cost of land within each district likely to move into switchgrass production, 

we believe the offers data provide a reasonable approximation based on revealed landowner variation 

in willingness to shift current land use.  

We posit that CRP offers data can contribute to understanding the opportunity cost faced by 

landowners of moving from row-crop production to switchgrass production; however, their use in this 

manner requires some discussion of the ways in which they may not be a precise indicator. There are 

many factors that lead landowners to enroll in the CRP and on which their bid rate may be 

conditioned. Landowners may have references for providing environmental benefits and other 

amenities, such as hunting benefits, from which the benefits from switchgrass production may not 

equal the benefits from CRP enrollment. For example, annual switchgrass harvest may limit desired 

environmental benefits (e.g., soil compaction from machinery), while a limited switchgrass harvest 
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window may reduce potential hunting benefits. Some landowner’s also might desire the “absentee 

landowner” opportunity provided by CRP enrollment. In this case, the biorefinery may need to 

develop a more integrated system and contract for land access as opposed to biomass and assume 

responsibility of biomass production (e.g., plantation model). Finally, a literature exists on the 

potential for landowners to submit bids in excess of their reservation wage in order to extract rent 

from the CRP (Kirwan, Lubowski, & Roberts, 2005; Marra & Vukina, 1998; Miranda, 1992; 

Reichelderfer & Boggess, 1988; Schoemaker, 1989; Smith, 1995; Vukina, Zheng, Marra, & Levy, 

2008). To the extent that landowners behave in this manner, offers do not necessarily capture the 

landowner’s minimum willingness to accept but something greater. Without an appropriate method to 

identify which, if any, bids fall into this category, we do not attempt to correct for potential over-bids 

and use the observed values to represent the value at which landowners are willing to forgo the 

current land use.  

4.4.2 Data and parameter assumptions 

Data for the “baseline” biorefinery are from Kazi et al. (2010b) who provide costs for a 

proposed 53.4 million gallon per year (mgy) biorefinery using a biochemical process (co-current 

dilute acid prehydrolysis and enzymatic hydrolysis).
80

 Capital costs are assumed to exhibit economies 

of scale. Capital costs for the proposed biorefinery are $375.9 million or approximately $0.72 per 

gallon (     
) when amortized over a 20 year plant life at an interest rate of 8% and assuming a 

biofuel yield of 69.2 gallons per dry short ton of switchgrass (YO). A baseline value of 0.75 is 

assumed for the biorefinery economies of scale factor (k). For simplicity, all other processing costs 

are considered to be independent of plant size. Total operating costs, including co-product credit from 

                                                      
80

 The biorefinery outlined in Kazi et al. (2010a) is for a corn stover to ethanol biorefinery. Biorefinery costs 

(     
,     ) are assumed to be similar for switchgrass and stover conversion with the same platform 

technology. To the extent we underestimate biorefinery costs that exhibit economies of scale (     
), we will 

underestimate the optimal biorefinery capacity.      is independent of biorefinery capacity and therefore will 

not impact the cost-minimizing biorefinery capacity. Yet, to the extent we underestimate     , we will 

underestimate the average biofuel production cost at all capacity levels. 
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excess electricity but excluding capital depreciation and average return on investment, are 

approximately $1.40 per gallon (    ).  

Switchgrass production costs per dry ton (PSG) are taken from Khanna et al. (2011).
81

 For 

switchgrass yields (YB), we assume 75% of the simulated values from the crop productivity model 

MISCANMOD reported by Khanna et al. (2011). The lower yield assumption reflects recent field and 

plot trials and accounts for lower collection efficiency and additional handling losses (Rosburg & 

Miranowski, 2011). Switchgrass production costs per dry ton are adjusted to reflect the lower per acre 

yield assumption.
82

 Due to low switchgrass yields (< 0.60 dt/acre) and high biomass production costs 

(> $280/dt), four CRDs located in south and west Texas are excluded. This reduces the total number 

of districts in the analysis to 182.  

Long term biomass storage costs (S), including loading and unloading costs, are $15.50 per 

dry ton based on values reported in Miranowski & Rosburg (2010a). The variable cost for 

transportation (t) is $0.71 per dry ton per mile as assumed in Wright & Brown (2007). Table 4.1 

summarizes the data and parameter assumptions used to solve the biorefinery optimization problem 

for each district. Key parameter assumptions will be subjected to sensitivity analysis and discussed 

later. 

  

                                                      
81

 All biomass values are reported in short tons.  
82

 An illustration of the switchgrass production cost ($ per-dry ton) and yield (dry tons per-acre) for each CRD 

within the analysis can be found in Appendix Figures C.4.1 and C.4.2, respectively.  
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Table 4.1 – Biorefinery and feedstock cost parameter assumptions 

 Parameter Value Source(s) 

Biorefinery    

 Technology Biochemical Kazi et al. (2010b) 

 Q0 53.4 mgy Kazi et al. (2010b) 

      
  $0.72/gal  

 Total cost $375.9 million Kazi et al. (2010b) 

 Debt financing 100% Wright & Brown (2007) 

 Years 20 years Wright & Brown (2007) 

 Interest rate 8% Wright & Brown (2007) 

       $1.40/gal Kazi et al. (2010b)
 83

 

 YO 69.2 gal/dt Kazi et al. (2010b) 

 k 0.75 Several
84

 

Feedstock    

 PSG CRD specific Khanna et al. (2011) scaled by yield 

assumption 

 YB CRD specific 75% yield value from Khanna et al. (2011) 

 S $15.50/dt Miranowski & Rosburg (2010a)
85

 

 t $0.71/dt/mile Wright & Brown (2007) 

 γ 0.0189 French (1960) 

 dA 

25% cropland pasture 

25% permanent pasture 

25% CRP acreage 

25% failed cropland 

10% harvested cropland 

CRD specific 2007 Agricultural Census data (NASS) and 

CRP enrollment data (USDA – FSA) 

 ds(POpp) and POpp CRD-specific 

function 

CRP offers data 

 

  

                                                      
83

 Sum of operating costs reported by Kazi et al. (2010a). Includes co-product credit but excludes capital 

depreciation and average return on investment. 
84

 Cameron, Kumar, & Flynn (2007b), de Wit, Junginger, Lensink, Londo, & Faaij (2010), Gan (2007), Kaylen, 

Van Dyne, Choi, & Blasé (2000), Kumar, Cameron, & Flynn (2003), Leboreiro & Hilaly (2011), Searcy & 

Flynn (2009), and Wright & Brown (2007a).  
85

 Reported value includes storage cost and distance fixed costs (loading).  
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4.4.3 CRD acreage constraint 

To avoid double-counting acreage and overestimating potential biofuel supply, the 

biorefinery is limited to acreage only within the CRD. The maximum capture radius is set at the 

capture radius for a biorefinery located in the center of the CRD with a circular capture region and 

total land area equal to the total land area within the district (equation 14).  

       √
                 C    

 
 .      (14) 

Combining equation (14) with the model equation for capture radius (equation 2) yields the following 

constraint:  

   (
      

 
)
 
 [                 (      )].   (15)  

4.4.4 Empirical specification and estimation procedure 

The empirical analysis is conducted in three steps. First, the function     (      ) is estimated 

for each district using the CRP offers data. Second, the CRD-specific estimates for     (      ) are 

incorporated within a non-linear mathematical programming model to identify the cost-minimizing 

production decisions for a biorefinery in each CRD. The model is limited to one biorefinery per 

district for the baseline results. Given the parameter assumptions and constraints outlined in the 

previous subsections, the non-linear mathematical programming model solves equation (16) for each 

CRD ( j). The model simultaneously derives the minimum total cost per gallon of biofuel production 

(  ), minimum efficient capacity (  ), and per acre opportunity cost payment (      ) at the cost-

minimizing landowner participation rate [dS,j(POpp,j)].  
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In the third and final step, the CRD minimum costs of biofuel production and cost-minimizing 

biorefinery capacities are combined to generate a stepwise aggregate supply curve for ethanol.  

4.5 Results    

This section presents results from the empirical application to switchgrass ethanol production. 

We begin with CRD-level results based on the cost-minimizing plant size, capture radius, and price of 

biomass.
86

 CRD supplies are combined to develop the aggregate supply curve. The estimated 

aggregate supply curve is used to identify the least cost of meeting the RFS2 cellulosic biofuel 

mandates and other production targets. The estimated supply curve in then compared to estimated 

supply curves derived with fixed land opportunity costs and participation rates. Sensitivity analysis 

follows for key model and parameter assumptions.  

4.5.1 Baseline model results 

Figure 4.5 illustrates the minimum cost per gallon of ethanol (C) produced in each CRD. 

Estimated costs range from $3.19 to $4.57 per gallon.
87

 The lowest cost ethanol is produced at a 117 

mgy biorefinery located in northeast Texas. The CRDs numbered in Figure 4.5 represent the 10 least-

                                                      
86

 The CRDs considered in the analysis include the 182 CRDs located in rain-fed regions with at least 20 offers 

to enroll in CRP signup 26. 
87

 All per-gallon estimates are reported on a per-gallon ethanol basis. Other studies report biofuel cost estimates 

on a gasoline-equivalent basis. Per-gallon ethanol prices can be converted into a gasoline-equivalent basis using 

an energy equivalence factor. One gallon of ethanol provides approximately two-thirds the energy content of 

one gallon of conventional gasoline. The reported ethanol cost range is equivalent to a range of $4.80-$6.85 per 

gallon gasoline equivalent.  



www.manaraa.com

98 

 

 

cost locations and are located in Texas, Oklahoma, and Kansas.
88

 Relatively low ethanol costs in 

these districts are driven by a combination of higher biomass yields, lower land opportunity costs, and 

a greater amount of suitable land for biomass production. The model results suggest ethanol 

production would first develop at these locations then shift towards higher cost locations in the 

Northern and Southern Plains, Delta, and Appalachia regions.  

Figure 4.5 – Estimated minimum total cost ($/gallon) of switchgrasss ethanol by CRD 

(Numbers identify the 10 biorefinery locations with lowest per gallon cost where 1 represents the least cost location) 

 

Figure 4.6 provides the aggregate ethanol supply curve constructed from the CRD cost-

minimizing supplies. Although the aggregate supply curve appears relatively smooth, the estimated 

function is a stepwise curve with each step corresponding to a different biorefinery location. If each 

                                                      
88

 An illustration analogous to Figure 4.5 for the cost-minimizing biorefinery capacity (Q
*
) in each CRD can be 

found in Appendix Figure C.4.3. 
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district has a biorefinery at the cost-minimizing capacity, estimated total production reaches 9.5 

billion gallons per year (bgy). 

Figure 4.6 – Estimated ethanol supply curve from switchgrass 

 

The ethanol supply curve can be used to identify the market conditions needed or costs to 

meet the RFS2 cellulosic biofuel mandates and other production targets with switchgrass. Table 4.2 

provides three alternative costs or market conditions needed to support switchgrass production 

between 2 and 8 bgy. First, the ethanol supply curve provides an estimate of the breakeven price of 

biofuel production (Table 4.2, Row 1). Second, the breakeven ethanol price can be translated into a 

long-run price of oil needed for markets to support biofuel production by assuming a simple linear 

relationship between the price of ethanol and price of oil [               (
    

  
)] (Table 4.2, row 

2). Third, a lower market price of oil would be needed to support biofuel production if the 

government covers a portion of the biofuel costs through a tax credit to cellulosic biofuel producers 
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(Table 4.2, row 3).
89

 While the price of oil needed to support the market is lower with the tax credit, 

the total cost is unchanged given the cost of government support.  

Table 4.2 – Market conditions needed to support U.S. biofuel production with switchgrass 

ethanol 
(2007$) 

Production (bgy) 2 4.25 6 8 

Cellulosic ethanol price ($/gallon)  3.37 3.52 3.64 3.92 

Oil price ($/barrel) 147 153 158 171 

Oil price with tax credit ($/barrel) 103 109 114 127 

 Note: Values are wholesale prices 

A cellulosic ethanol price of $3.52 per gallon ($5.30 per gallon gasoline equivalent) or a 

long-run oil price above $150 per barrel is needed for switchgrass-based ethanol to satisfy the 2016 

cellulosic biofuel mandate of 4.25 bgy. With extension of the current cellulosic biofuel producer’s tax 

credit of $1.01 per gallon, the long-run oil price needed for the market to support 4.25 bgy reduces to 

$109 per barrel.
90

 At its record peak in July 2008, the price of crude oil reached $145 per barrel and 

then fell to around $30 per barrel by December 2008. The 2012 Annual Energy Outlook forecasts oil 

prices of $129 per barrel in 2022 and $145 per barrel in 2035 in their reference scenario (2010$) (U.S. 

EIA, 2012a).  

We hypothesized heterogeneity between and within local biomass would create significant 

variation in the cost-minimizing decisions across CRDs. The summary statistics in Table 4.3 support 

this hypothesis. Minimum efficient capacities range from 9 to 117 mgy with a 52 mgy average 

capacity, while the capture radius is 35 miles on average with a range between 22 and 51 miles.
91

 The 

                                                      
89

 The cellulosic biofuel producer’s tax credit provided by the 2008 Farm Bill is scheduled to expire on 

December 31, 2012.  
90

 A graph of the quantity of breakeven production with and without the tax credit over a range of oil prices can 

be found in Appendix Figure C.4.4.  
91

 The CRD acreage constraint imposed to avoid double-counting (equation 15) was binding for about 20% of 

the CRDs but prevalent in higher cost locations. The constraint was non-binding for CRDs that contribute the 

first 4.4 bgy of ethanol; acreage within these CRDs was able to satisfy the feedstock demand for the minimum 

efficient scale biorefinery capacity. A binding acreage constraint within select CRDs has minimal effect on the 
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landowner participation rate ranges between 47% and 100% with opportunity cost between $4 and 

$58 per dry ton.  

Table 4.3 – Summary statistics of cost-minimizing biorefinery decisions 

        
    

  
   

 (mgy) (miles)  ($/dt) ($/gallon) 

All biorefineries (182)      

Average  52 35 90.7% 18.6 3.73 

Median   46 35 94% 15 3.67 

Range 9 – 117 22 – 51 47-100% 4 – 58 3.19 – 4.57 

10 most cost-efficient locations (average) 107 29 98% 9.8 3.25 

10 least cost-efficient locations (average) 30 39 74% 43 4.43 

 

To further illustrate the variation in cost-minimizing decisions, consider the 10 most cost-

efficient and 10 least cost-efficient locations. In the former, high participation rates can be achieved at 

a relatively low cost. These locations capitalize on the presence of low opportunity cost land by 

building large-scale biorefineries (107 mgy average) with high local participation rates (98% 

average). The average opportunity cost to achieve high participation is only $9.80 per dry ton. These 

locations also benefit from larger amounts of available land for biomass production (i.e., higher dA) 

and higher biomass yields resulting in a below average capture radius (29 miles). In contrast, high 

landowner participation rates are costly within the 10 least cost-efficient locations. An average land 

opportunity cost payment of $43 per dry ton is needed to achieve an average participation rate of 

74%. With lower landowner participation, biomass yields, and density of available land for biomass 

production, these biorefineries transport biomass from more distant locations (39 miles) despite a 

lower feedstock demand (30 mgy capacity).  

The summary statistics in Table 4.3 provide insight into the spatial variation in cost-

minimizing decisions but do not provide a complete picture of the CRD-level economic trade-offs 

                                                                                                                                                                     
estimated aggregate supply curve. A comparison of the estimated aggregate supply curve with and without the 

acreage constraint is provided in Appendix Figure C.4.5. 
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underlying the estimated aggregate supply curve. The cost-minimizing biorefinery decisions along the 

supply curve depicted in Figure 4.7 make it possible to take a closer look at CRD-level trade-offs. 

Each dot in Figures 4.7a – 4.7c represents the cost-minimizing decision for the biorefinery built at the 

corresponding aggregate production level (or price of ethanol).
92

 Least cost biofuel expansion is 

characterized by three trends: decreasing capacity (Figure 4.7a), increasing biomass transportation 

distance (Figure 4.7b), and decreasing landowner participation rate (Figure 4.7c). These trends are a 

result of locational differences in the economics of biomass production.  

Figure 4.7 – Biorefinery cost-minimizing decisions along the aggregate supply curve 

(a). Biorefinery capacity (Q)   (b). Capture radius (r) 

      
(c). Participation rate (dS) 

   

                                                      
92

 Appendix Figure C.4.6 provides analogous figures for biomass yield, biomass production costs, density of 

available land for biomass production, opportunity cost per acre, and opportunity cost per ton of switchgrass.  
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Three key determinants of locational differences in biomass production include biomass 

yield, amount of suitable land for biomass production, and land opportunity costs. Cost efficient 

biorefineries are located in regions with higher biomass yields. All else constant, a lower biomass 

yield increases the cost of biofuel in three ways. First, the biorefinery would have to travel farther to 

meet a given feedstock demand. Second, a lower yield increases the opportunity cost per dry ton of 

biomass. Third, biomass production costs increase as fixed costs of production are spread over fewer 

units of output. As a result, the expansion of biofuel production onto lower yielding areas not only 

increases the cost of biofuel production but leads to smaller capacity biorefineries with larger capture 

regions and lower participation rates.  

The fraction of available land for switchgrass production also is falling with cumulative 

production. The decrease in suitable land for biomass production has similar effects on capture region 

distance as a decrease in biomass yield. Therefore, biofuel market expansion into areas with lower 

land availability is another contributor to declining biorefinery capacity and increasing biomass 

hauling distance.  

As biofuel production expands into areas with higher opportunity cost land, the cost-

minimizing decision is to operate at a lower point along the   (    ) curve. The inclusion of an 

endogenous participation rate is able to dampen but does not reverse the upward trend in per acre 

opportunity costs. Even with lower participation rates, per acre opportunity costs still are higher. 

Similar to lower switchgrass yield and available land, biofuel expansion into areas with high 

opportunity cost land increases the cost of biofuel production but also supports the upward trend in 

capture radius and downward trends in the participation rate and biorefinery capacity.  

By accounting for these spatial differences within and between biomass suppliers, we capture 

important economic trade-offs in biomass production, transportation, and conversion. Ultimately, 

these local trade-offs drive the convex nature of the aggregate supply curve in Figure 4.6 and, as will 
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be shown in the following subsection, ignoring these trade-offs may lead to an under- or over-

estimate of the quantity and cost of biofuel production.  

4.5.2 Impact of fixed versus endogenous participation rates  

Heterogeneity between local landowners enters the empirical model through location-specific 

participation rate and opportunity cost functions, ds(POpp). Previous studies have assumed exogenous, 

fixed values for participation rate and opportunity cost payment. Unless the fixed participation rate 

and opportunity cost are set exactly at the cost-minimizing values for each potential location, a fixed 

analysis will over- or under-estimate the cost-minimizing production conditions. We first consider 

two hypothetical scenarios which are constructed on the premise that, without data on supplier 

heterogeneity, researchers are likely to use some sort of ‘average values.’ Second, we compare the 

baseline results to those using participation rate and opportunity cost assumptions found in previous 

literature.  

Two hypothetical scenarios for a fixed analysis 

Two hypothetical scenarios are constructed on the premise that, without data on supplier 

heterogeneity, researchers are likely to use some sort of ‘average values.’ In Scenario 1, the fixed 

participation rate and opportunity cost payment are set equal to the average values for the 10 least-

cost biorefinery locations. In other words, Scenario 1 extrapolates the best-case conditions to all 

CRDs. The participation rate is fixed at 98% and opportunity cost payment is fixed at $9.80 per dry 

ton. Scenario 2 sets the fixed participation rate and opportunity cost payment equal to the average 

values from all 182 biorefinery locations. Scenario 2 represents the mean values for participation rate 

and opportunity cost payment of 90.7% and $18.60 per dry ton, respectively.  
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Figure 4.8 graphs the ethanol supply curves from the baseline and two fixed analysis 

scenarios.
93

 Scenario 1 underestimates the cost of ethanol production (beyond 1 bgy) and 

overestimates total production capacity (~0.5 bgy). Scenario 2 overestimates the cost of switchgrass 

ethanol production for lower aggregate production levels but underestimates the cost of production 

for aggregate production above 7.25 bgy. An important observation from Figure 4.8 is the additional 

variation in the supply curve with an endogenous participation rate relative to fixed analysis 

scenarios. The supply curves for Scenario 1 and 2 are relatively flat compared to the baseline supply 

curve (up to 9 bgy). By accounting for observed heterogeneity in potential biomass suppliers, the 

baseline model is able to trade-off economies in biomass production, transportation, and conversion 

not captured by the fixed value scenarios.  

Figure 4.8 – Estimated aggregate supply curve for the baseline and fixed analysis scenarios 

  

                                                      
93

 With a fixed biomass density and price of biomass value for each CRD, the optimistic and average scenarios 

are estimated using the simplified biorefinery objective function discussed in section 4.3.4 and outlined in 

Appendix C.3.  
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Differences in the estimated aggregate supply curve stem from differences in CRD-level cost-

minimizing production decisions. Location-specific biomass production conditions make it 

impossible for a single fixed value to be set at the cost-minimizing value for all CRDs. As a result, the 

impact on the estimated cost and capacity from imposing fixed values will not be uniform across 

locations.  

For example, Figure 4.9 compares the impact of Scenario 2 on the estimated ethanol cost and 

plant capacity in three CRDs located in the same state. CRD A has relatively high per acre 

opportunity costs and low switchgrass yields. The minimum of CRD A’s cost surface is at a lower 

participation rate and higher opportunity cost payment than assumed in Scenario 2. As a result, 

Scenario 2 underestimates the cost of production and overestimates the minimum efficient capacity. 

For CRD B, Scenario 2 assumptions are close to the values at the minimum point on CRD B’s cost 

surface and the fixed approach has minimal impact on the estimated cost and capacity. The third 

location, CRD C, has relatively low opportunity costs. Scenario 2 assumes a lower participation rate 

and higher opportunity cost payment and overestimates the cost of production and underestimates the 

minimum efficient capacity. Although the CRDs in Figure 4.9 are located in the same state, they 

experience different impacts in terms of the estimated cost and quantity of least-cost production from 

the Scenario 2 assumptions. Moving beyond CRDs within the same state, the variation in the cost and 

quantity impacts from a fixed analysis increase as locations differ more in terms of switchgrass 

potential and land opportunity cost.  
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Figure 4.9 – Sensitivity of average cost of biofuel production ($/gallon ethanol) and minimum 

efficient capacity to Scenario 2 assumptions for three CRDs in the same state 

CRD A  

Endogenous Participation Rate   Fixed participation rate and opportunity cost 

   

CRD B 

Endogenous Participation Rate   Fixed participation rate and opportunity cost 
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Comparison with previous literature  

Previous literature has used a variety of assumptions regarding landowner participation in 

biomass supply and land opportunity cost. We compare baseline model results to those derived using 

the fixed assumptions from four recent studies: Huang et al. (2009), Popp & Hogan (2007), Brechbill 

& Tyner (2008a), and Khanna, Chen, Huang, & Onal (2011). Table 4.4 summarizes the participation 

rate and opportunity cost assumptions from each analysis. These studies differ in several important 

ways beyond the participation rate and land opportunity cost assumptions. In order to focus on the 

impact of interest, other paper-specific assumptions are not considered. Baseline model assumptions 

and data are used for all other model parameters.  

Table 4.4 – Switchgrass land density and opportunity cost assumptions 

Model Fraction of land 

in switchgrass (d) 

Opportunity cost (POpp)
94

 

Baseline dA*ds(POpp) ds
-1

(POpp) 

Brechbill & Tyner (2008a)
95

 0.75*dA  $70/YB 

Huang et al. (2009) 0.075 $10*(dgrassland) + $15.4*(dcropland) 

Khanna et al. (2011)
96

 1.0*dA Net returns from least profitable 

crop (CRD-specific)  

Popp & Hogan (2007) 0.175 $75/YB 

   
Figure 4.10 graphs the estimated aggregate supply curve from the baseline model along with 

the estimated supply curves using the fixed participation rate and opportunity cost assumptions from 

the four papers considered. The assumptions used by Huang et al. (2009) and Brechbill & Tyner 

(2008a) result in estimated supply curves with similar curvature to the baseline model but with higher 

cost estimates. The estimated supply curves using the assumptions reported in Popp & Hogan (2007) 

and Khanna et al. (2011) originate at a price near the baseline supply curve but increase at a slower 

                                                      
94

 Baseline yield assumptions and data are used to convert all per acre opportunity costs into per ton values. 
95

 Brechbill & Tyner (2008a) derive dA based on Indiana land use data. To focus on the impact of different 

participation rates, we maintain our assumption for dA and use the 75% participation rate assumption. Although 

not evaluated here, Brechbill & Tyner (2008a) also considered a participation rate of 50%. 
96

 Khanna et al. (2011) assume that 25% of cropland, pastured cropland, and cropland idle is able to switch into 

perennial grass production (i.e., dA). Similar to the Brechbill & Tyner (2008a) assumptions, we maintain our 

assumption for dA and use the reported participation rate.  
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and faster rate, respectively. The slower rate of increase in the Popp & Hogan (2007) supply curve is 

driven by higher participation rate and lower opportunity cost assumptions. These assumptions result 

in lower cost biofuel produced at larger capacity biorefineries.  

Unlike the other three studies, Khanna et al. (2011) allow for different land opportunity costs 

between CRDs. Yet, the opportunity cost is assumed fixed for all suppliers within each CRD. The 

baseline model relaxes this assumption through CRD-specific participation rate and opportunity cost 

functions. That is, biorefineries located in areas with higher opportunity cost land have the flexibility 

to trade-off landowner participation for a lower opportunity cost payment. Baseline results found that 

the cost-minimizing decision for many biorefineries located in areas with higher opportunity cost land 

is to operate at a lower point along the participation rate function. A comparison of the Khanna et al. 

supply curve with the baseline supply curve in Figure 4.10 shows that the inclusion of participation 

rate functions dampens the estimated cost impact of biofuel expansion into areas with higher 

opportunity cost land.  

Figure 4.10 – Estimated aggregate switchgrass ethanol supply from baseline model and 

assumptions used in previous literature
97

 

  
                                                      
97

 Due to particularly high land opportunity costs, Figure 4.10 excludes the 5 highest cost biorefineries (CRDs) 

from the Khanna et al. (2011) scenario.  
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4.5.3 Sensitivity analysis   

We evaluate the sensitivity of the baseline results to key model and parameter assumptions. 

Figure 4.11 indicates the sensitivity of the estimated supply curve to alternative model and parameter 

assumptions, and Appendix Table C.4.1 reports the average change in cost-minimizing biorefinery 

decisions. In all cases, more uncertainty exists at the upper end of the supply curve than the lower end 

of the supply curve. As biofuel production is expanded, greater opportunity exists to under- or over-

estimate supply potential.  

Figure 4.11 – Sensitivity of estimated ethanol supply to alternative model and parameter 

assumptions 

(a) Switchgrass yield (YB)   (b) Available biomass cropland (dA) 

 
(c) Variable transportation cost (t)  (d) Economies of scale 
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Figure 4.11 (continued) 

 

 (e) Fast Pyrolysis    (f) Two biorefineries per CRD 

  
 

(g) Alternative transportation models 

 

Switchgrass yield and production cost 

The baseline results assume switchgrass yields at 75% of the values reported in Khanna et al. 

(2011). Consider two alternative yield percentages, 60% and 100%, denoted as the low and high yield 

assumptions.
98

 The higher switchgrass yields result in lower cost biofuel production and larger total 

production (Figure 4.11a). The change in switchgrass yield does not have a uniform effect on all 

potential biorefinery locations. The difference in the estimated cost of biofuel production between 

yield assumptions increases with capacity. High cost producers face higher opportunity cost land and 

are more sensitive to a change in switchgrass yield.  

                                                      
98

 Per dry ton switchgrass costs (PSG) are adjusted appropriately. 
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Lower yields correspond to higher cost biofuel produced at smaller capacity biorefineries 

with slightly larger capture regions, lower participation rates, and higher land opportunity cost 

payments per dry ton (see Appendix Table C.4.1). Although the changes in the cost-minimizing 

production decisions are prevalent in all regions, the capacity effects are more pronounced for lower 

cost producers while the opportunity cost effects are more pronounced for higher cost producers.
99

   

Land available for biomass production  

Sensitivity to the amount of land available for biomass production (dA) is evaluated using a 

high and low assumption. For high availability, the fraction of permanent pasture available for 

conversion is increased from 25% to 50% and harvested cropland from 10% to 25% as assumed in the 

Updated Billion Ton Report (U.S. DOE, 2011b). The low land availability assumes only 60% of 

landowners would consider supplying land for switchgrass production (i.e., dA,low = 0.60*dA,base) based 

on survey findings summarized in Qualls et al. (2011) and Menard et al. (2011).
100

 A change in 

available land for biomass production has comparable effects to the change in biomass yield (Figure 

4.11b). Appendix C.5 considers the impact on model results from removing the upper bound on land 

available for switchgrass production in each region. Baseline model results are robust to removing 

this constraint given the range of land use elasticities reported in the literature. 

Transportation cost 

A decrease in the variable cost of transportation reduces diseconomies of transportation. To 

evaluate the impact of diseconomies of transportation, consider variable transportation costs per dry 

ton per mile of $0.50 and $1.00 from the baseline value of $0.71 per dry ton per mile. With lower 

transportation cost and therefore lower diseconomies of transportation, the cost-minimizing 

biorefinery is expected to increase capacity and/or decrease the land opportunity cost payment.  

                                                      
99

 Appendix Table C.4.2 provides the average difference in biorefinery characteristics between alternative 

assumptions and baseline results for the 10 least-cost locations identified by the baseline results.  
100

 Based on a 2009 12-state survey, Qualls et al. (2011) and Menard et al. (2011) report only 60% of 

respondents were somewhat to very interested in supplying switchgrass for bioenergy even if “profitable.”  
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Aggregate biofuel capacity increases (+ 4.1 bgy) and decreases (- 3.3 bgy) with the lower and 

higher transportation cost, respectively (Figure 4.11c). The capacity impacts are greater within the 10 

least-cost locations (Appendix Table C.4.2). Although the change in the cost-minimizing participation 

rate was minimal on average, the standard deviation was approximately 2% across all CRDs and the 

percentage change ranged between -7% and +14% with the low transportation cost and -16% to 

+16% with the high transportation cost (Appendix Table C.4.1). This variation stems from locational 

differences in the economic trade-offs in switchgrass production, transportation, and conversion.  

Economies of scale   

 While the variable cost of transportation determines the diseconomies of transportation, the 

economies of scale factor (k) determines the rate of biorefinery economies of scale. For k strictly less 

than one, the value     represents the rate at which per gallon cost decreases with capacity, or the 

degree of economies of scale. The baseline results assume k = 0.75. Based on the values reported in 

the literature, we test the model results to a low and high k value: 0.60 and 0.90 (Cameron, Kumar, & 

Flynn, 2007; de Wit, Junginger, Lensink, Londo, & Faaij, 2010; Gan, 2007; Kaylen, Van Dyne, Choi, 

& Blase, 2000; Kumar, Cameron, & Flynn, 2003; Searcy & Flynn, 2009; Wright & Brown, 2007b). 

Biorefinery economies of scale are inversely related to k, and the cost-minimizing biorefinery 

capacity should be inversely related to k.  

The supply curve is sensitive to economies of scale as shown in Figure 4.11d. The cost of 

biofuel production increases with lower economies of scale. Total biofuel production is 2 bgy, or a 

7.5 bgy reduction from the baseline results. The average biorefinery decreases in capacity by 41 mgy 

with lower economies of scale. With high economies of scale, total production increases by 4.5 bgy to 

14 bgy.  

Biorefinery technology 

The baseline biorefinery costs were taken from the biomass-to-ethanol biorefinery outlined in 

Kazi et al. (2010) using a biochemical conversion process. The biochemical conversion process was 
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chosen for the baseline scenario since the engineering cost estimates for this process have been 

updated several times within the past 10 years (Aden, et al., 2002; Aden A. , 2009; Kazi, et al., 2010b; 

Aden A. , 2008).
101

 Here we consider an alternative biomass to transportation fuel technology, fast 

pyrolysis. Wright et al. (2009; 2010) provide cost and technology estimates for a proposed 58.2 mgy 

biorefinery which converts biomass to bio-oil and subsequently upgrades bio-oil to naphtha and diesel 

range fuels.
102

 Capital costs for the proposed biorefinery are $200 million or approximately $0.66 per 

gallon (     
) when amortized over a 20-year plant life at an interest rate of 8% and assuming a 

biofuel yield of 80 gallons per dry ton of switchgrass (YO). Total operating costs are approximately 

$0.72 per gallon (    ). 

 The lower operating costs and capital costs for the fast pyrolysis conversion process result in 

lower cost biofuel and an increase in total production capacity (Figure 4.11e). Total production 

capacity increases by 2 bgy. On average, the cost and technology assumptions for fast pyrolysis 

conversion result in lower cost biofuel produced at larger capacity biorefineries (+11 mgy) with larger 

capture regions (Appendix Table C.4.1). The average impact on biorefinery capacity is greater within 

the 10 least cost per gallon locations (+24 mgy) (Appendix Table C.4.2).  

Multiple biorefineries  

 For the results presented so far, the model is constrained to identify one biorefinery per CRD. 

Here we consider the impact on aggregate ethanol supply when districts have two biorefineries. First, 

none of the districts had enough area to support two cost-minimizing biorefineries side-by-side based 

on the capture region and area of the district. Therefore, the analysis considers a second biorefinery 

conditional on a first biorefinery already built with the cost-minimizing production conditions of 

                                                      
101

 The trend in the cost estimates has been an increase in the estimated (real) cost of biofuel production. 
102

 The biorefinery outlined in Wright et al. (2009; 2010) is for a biorefinery converting corn stover to bio-oil 

with subsequent upgrading of the bio-oil to naphtha and diesel range fuels. As with the baseline model 

technology (biochemical), biorefinery costs are assumed to be similar for switchgrass and stover conversion 

with the same platform technology. Implications of this assumption were discussed in a footnote in section 

4.4.2.  
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capacity, capture radius, and participation rate. The first biorefinery is assumed to have secured long-

term contracts with landowners willing to supply land for biomass production at the offered price of 

biomass. The second biorefinery can contract with the remaining potential suppliers who were not 

willing to supply at the price offered by the first biorefinery, but are willing to supply at a higher 

price. In other words, the second biorefinery faces the remaining portion of the participation rate 

function [dS (Popp)] above the participation rate captured by the first biorefinery. Given the first 

biorefinery in some CRDs contracted with almost 100% of available suppliers, a second biorefinery is 

not feasible in all locations. Locations are considered for a second biorefinery if they can support a 

capacity of at least 8 mgy.  

 Figure 4.11f compares the estimated aggregate ethanol supply curve with one biorefinery per 

CRD to the estimated supply curve with two potential biorefineries per CRD. The first location to 

have a second biorefinery enters the market at an ethanol price of $3.84 per gallon or at an aggregate 

production level of 7.5 bgy. Allowing two biorefineries per CRD increases the total production 

capacity to 10.8 bgy. Yet, the last 1 bgy of production is costly (> $4.30 per gallon ethanol or $6.45 

per gallon gasoline equivalent). Given the first biorefinery has secured contracts for the least-cost 

biomass, a second biorefinery is unlikely to be economically feasible unless a new technology 

develops with significantly lower costs. Even in this situation, it may be more economical to retrofit 

or expand the existing biorefinery.  

Alternative transportation models  

 Baseline results assume biomass is evenly distributed within the capture region and the 

biofuel processor cannot price discriminate between biomass suppliers. We consider two alternative 

approaches for modeling biomass transportation; one which allows for non-uniform participation 

within the capture region and a second which allows the biorefinery to price discriminate to capture 

transportation-related rents.  
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 Based on a model of agricultural land use within an isolated state or final market, Von 

Thunen (1966) hypothesized a pattern of concentric rings of agricultural production that would reflect 

the cost of transportation to the final market. Here, the final market for biomass is the centrally-

located biorefinery. Based on Von Thunen’s model, biomass suppliers located closer to the 

biorefinery will benefit from location or bid rents. The baseline model accounts for such bid rents by 

assuming a biomass supplier located x miles from a biorefinery which contracts biomass from a 

capture radius r receives location-specific rents equal to   (   ), where t  is the variable 

transportation cost. Yet, the baseline model assumes biomass density is uniform within the capture 

region. The first alternative transportation model relaxes this assumption. For this alternative model, 

biomass suppliers located closer to the biorefinery are assumed to partially offset switchgrass 

production costs through higher location-specific rents. That is, the minimum biomass price required 

by landowner i located xi miles from a biorefinery in district j to participate in switchgrass production 

will equal switchgrass production costs, including opportunity costs, less location-specific rents or 

      
        

    
         .    (17) 

Assuming the biorefinery offers all suppliers an equal price for biomass, the fraction of landowners 

willing to allocate land into biomass production at the offered biomass price will decrease with 

distance from the biorefinery. Therefore, the landowner participation rate in district j will not only 

vary with the price offered by the biorefinery to cover landowner opportunity cost (      ) but also 

with the radius of the capture region (rj) and distance from the biorefinery (x). The rate of landowner 

participation in district j at distance x can be written as follows:  

  (           )           (
      

    
       )     where  

   

 (
      

    
       )

     (18) 

Incorporating this relationship between participation and hauling distance results in the following 

biorefinery objective function:  
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Empirical estimation of constraint (19.1), which ensures biorefinery capacity is consistent with the 

amount of biomass supplied from the capture region, proceeds using the following step-wise 

approximation of the integral or a ‘concentric ring’ approach: 

                    ∑ [       (              )   (   )     (            )]
    

      

                    ∑ [(      )      (              )]
    

       (20) 

where s denotes the step size and assumed 0.5 mile in this application. Figure 4.12 provides a visual 

depiction of the theoretical and empirical approach to account for diminishing participation rate with 

distance from the biorefinery. The empirical approach for diminishing participation reflects Von 

Thunen’s hypothesis of concentric rings that reflect the cost of transportation to the final market. The 

step size (s) in equation (20) represents the bandwidth of the concentric rings in Figure 4.12b.  

Figure 4.12 – Theoretical and empirical approach to diminishing participation with distance 

from biorefinery 

a. Theoretical approach   b. Empirical approach 
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 The second model considers the potential for a biorefinery to develop monopsony power in 

the local biomass market if biomass suppliers have limited options beyond the biorefinery. Since 

landowners are likely to anticipate this risk prior to allocating land into dedicated biomass production 

(Epplin, 2009), the monopsony power considered here is limited to transportation-related rents. The 

biorefinery is assumed to handle transportation and incur an average transportation cost equal to the 

product of the variable transportation cost (t) and average hauling distance within the capture region 

(D). The average hauling distance is derived using the equation from French (1960) for a circular 

capture area with a square road grid and uniform biomass density.
103

 Compared to the baseline 

transportation model, any transportation-related rents (i.e., bid rents) from biomass located near the 

biorefinery are transferred from biomass suppliers to the processor.  

Figure 4.11g provides estimated switchgrass ethanol supply curves under the alternative 

transportation models, and Appendix Table C.4.3 summarizes cost-minimizing biorefinery decisions. 

If the fixed transportation payment to biomass suppliers leads to higher participation near the 

biorefinery (‘Diminishing participation’ in figure 4.11g), per gallon production costs decrease by 

$0.02 per gallon on average relative to the baseline model with uniform participation. On average, the 

participation rate of able land decreases from 99 percent next to the biorefinery to 70 percent at the 

capture region radius. A shift in transportation-related rents to the biorefinery (‘Average hauling 

distance’ in figure 4.11g) decreases per gallon biofuel costs at all quantity levels and increases 

cumulative production. The average biorefinery is larger (+10 bgy) and transports biomass from 

farther locations (+3 miles).  

                                                      
103

 The equation used to calculate the average hauling distance (D) is the same equation used to calculate the 

capture radius (equation 2) but with a different value for the parameter  .With distance measured in miles and 

biomass yield measured per acre,   for a circular area with a square road grid is 0.0189.  
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4.6 Conclusions  

Cost efficient development of the cellulosic biofuel industry will not only require an 

understanding of the physical potential of biomass for alternative energy production as considered in 

several recent studies,
104

 but also a better understanding of the location-specific production decisions 

and market arrangements to ensure sufficient feedstock supply and least-cost biofuel production 

(Bergtold, Fewell, & Williams, 2011; Rajagopal, Sexton, Roland-Holst, & Zilberman, 2007). While a 

complete examination of the necessary market conditions for commercial scale biofuel production fall 

outside the scope of this chapter, we took a closer look at the impact of spatial variation in biomass 

potential and land opportunity cost on potential supply of U.S. cellulosic biofuel.  

A long-run biomass production through bioenergy conversion cost model was developed that 

incorporates heterogeneity of biomass suppliers within and between local markets. An application of 

the supply model to U.S. switchgrass-based ethanol production showed cost-minimizing production 

decisions – including biorefinery size, capture radius, and price of biomass – vary significantly across 

locations. Accounting for observed heterogeneity in potential biomass suppliers within and between 

local markets captured variation in the aggregate switchgrass ethanol supply curve not previously 

obtained. Empirical results confirm the hypothesis that economic trade-offs resulting from spatial 

variation in the economics of biomass production play an important role in the potential supply and 

distribution of U.S. cellulosic biofuel production.  

We have gained insight into factors determining the economics of the cellulosic biofuel 

industry. The difference in the estimated quantity and cost of biofuel production with an endogenous 

versus fixed participation rate provides support for the value of identifying landowner willingness to 

move into biomass production. Further, the sensitivity of ethanol production costs to landowner 

willingness to consider biomass production suggests raising landowner awareness of the benefits 

                                                      
104

Gallagher, Dikeman, Fritz, Wailes, Gauthier, & Shapouri (2003), Graham, Nelson, Sheehan, Perlack, & 

Wright (2007), Perlack, Wright, Turhollow, Graham, Stokes, & Erback (2005), U.S. DOE (U.S. DOE, 2011b), 

and Walsh, de la Torre Ugarte, Shapouri, & Slinsk (2003). 
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from biomass production may be an important step in the feasibility of commercial scale production. 

The costs of ethanol production also were sensitive to the transportation cost, economies of scale 

factor, and biomass conversion technology. Development of ways to reduce variable transportation 

costs and decrease conversion costs will be critical in the economics of biofuel production.  

We are currently extending the analysis to evaluate alternative feedstocks and multiple 

feedstock biorefineries. The results presented in this chapter are conditional on the data available for 

switchgrass production and biofuel processing. Since neither commercial scale biomass production 

nor biofuel processing has been realized, we rely on enterprise budgets and engineering cost 

estimates. Additional data from current pilot plants and future commercial scale operations will 

provide improved biomass production and biorefinery cost estimates. The unique dataset of CRP 

offers allows us to capture heterogeneity in landowner opportunity cost between and within markets. 

This is an underestimate of the potential heterogeneity within markets, but other sources of data are 

needed to explore farther. In future work we would like to extend the supply model to include 

additional sources of heterogeneity and price impacts from land use change to dedicated biomass 

production. Such extensions could provide further insight into the market impacts of cellulosic 

biofuel market development. 
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CHAPTER 5. GENERAL CONCLUSIONS 

 

Since 1978, the U.S. government has provided financial support for the development and 

expansion of the biofuel industry. Although priorities shifted over time, the primary policy drivers 

include energy independence, rural development opportunities, and environmental benefits of biofuel 

relative to conventional fuel. Market conditions, including continuous ethanol subsidies between 1978 

and 2011, led to rapid first-generation biofuel expansion between the early 1980s and late 2000s.  

First-generation biofuel expansion slowed in recent years as high commodity prices, 

particularly during 2007 and 2008, squeezed profit margins. High commodity prices also generated 

criticism of first-generation biofuel for using food crops (e.g., corn, soybeans) as biofuel feedstocks. 

The so-called ‘food-versus-fuel’ debate created backlash against first-generation biofuel policies. 

Further, concerns arose about the potential of first-generation biofuel to significantly contribute to 

increased energy independence, provide rural development opportunities, and generate positive 

climate change impacts (Rosillo-Calle & Tschirley, 2010). For example, the entire 2010 U.S. corn 

crop converted to ethanol would only have provided gross energy equivalent to 24 days of U.S. crude 

oil use (Epplin & Haque, 2011). 

First-generation biofuel concerns turned attention and interest to second-generation biofuel 

such as cellulosic biofuel. By using the structural material from plants rather than food crops, 

cellulosic biofuels avoid, or at least assuage, some of the issues faced by first-generation biofuels. 

Second-generation biofuels are also expected to be more water-efficient, require less arable land, and 

provide higher net energy balances and GHG emissions benefits (Schenk, et al., 2008; Wang, Wu, & 

Huo, 2007). The potential benefits of second-generation biofuel led to current policy support that 

includes market-based incentives and mandates. The 2008 Farm Bill provides tax credits to cellulosic 

biofuel producers and payment programs for biomass suppliers. The revised Renewable Fuel 
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Standard (RFS2) mandates use of increasing annual volumes of cellulosic biofuel between 2010 and 

2022.  

Despite government support, the cellulosic biofuel industry has been slow to develop. Each 

year since the RFS2 took effect, the EPA administrator has utilized a provision to waive a majority of 

the cellulosic biofuel mandate. The 2012 revised mandate is approximately 2% of the original 

mandate volume. The objectives of this dissertation are to provide a better understanding of why the 

cellulosic biofuel industry has been slow to develop and to identify important economic tradeoffs that 

will be encountered in commercial scale production.  

An economic evaluation of local biofuel and biomass markets in Chapter 3 provided insights 

into why the cellulosic biofuel industry has been slow to develop. An application of the Biofuel 

Breakeven (BioBreak) program to 14 potential local cellulosic biofuel markets that vary by feedstock 

and location found biofuel production under baseline model assumptions (including no fiscal policy 

incentives and $100 per barrel oil) would result in expected losses between $0.82 and $1.65 per 

gallon ethanol ($1.23-2.48 per gallon gasoline equivalent, 2007$). Program results further suggest 

cellulosic ethanol production is not sustainable without significant policy intervention, or 

alternatively, unless long-run oil price exceeds $135 - $170 per barrel. The 2012 Annual Energy 

Outlook oil forecast for 2022 is $129 per barrel (2010$, reference scenario). At the 2035 oil price 

forecast of $145 per barrel, limited cellulosic biofuel production would be sustainable without policy 

support (U.S. EIA, 2012a).  

One commonly mentioned justification for policy support is the potential environmental 

benefits of biofuel relative to conventional fuel. In particular, the RFS2 includes provisions that 

require biofuel in each subcategory (i.e., conventional, advanced, and cellulosic) to meet minimum 

GHG reduction standards. Chapter 3 provided an extension of the BioBreak results to evaluate the 

cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. Based on 

estimated prices and costs of biofuel production, policies that sustain cellulosic ethanol production 
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would value a reduction in carbon equivalents between $141 and $280 per metric ton, higher than 

most carbon tax rates/prices or social costs of carbon discussed in the literature. 

While a majority of previous literature has focused on either the feedstock supply system or 

biofuel refining process, the long-run breakeven models underlying BioBreak provide a complete 

accounting of all economic costs involved in biomass production, procurement, and conversion. As a 

result, the economic cost estimates of biofuel production identified by BioBreak are higher than 

frequently reported in other published studies. My estimates provide an indication of why the industry 

failed to develop and meet the RFS2 mandates for 2010, 2011, and 2012. Unless a more cost-efficient 

biomass production or biofuel conversion process is developed, long-run oil prices exceed existing 

forecasts, or existing biofuel policy become long-term, my results suggest industry development will 

likely remain limited in the near future. 

While Chapter 3 provided a better understanding of the economic factors that have limited 

industry development, Chapter 4 provided a closer look at the economic trade-offs within the 

biorefinery industry and feedstock production processes. A long-run biomass production through 

bioenergy conversion cost model was developed to minimize costs of biomass feedstock acquisition 

and conversion in a potential biorefinery. A key aspect of the model is the treatment of local biomass 

supply. Previous literature has assumed the fraction of local landowners willing and able to 

participate in biomass supply is fixed and independent of the price of biomass. The model developed 

in Chapter 4 relaxed this assumption by incorporating location-specific supply relationships between 

biomass quantity and the price of biomass offered by the biorefinery (i.e., local biomass supply 

curves).  

A theoretical model was specified and applied to switchgrass-based ethanol production within 

U.S. crop reporting districts (CRDs). In this application, local biomass supply curves were driven by 

variation in land opportunity costs. A dataset of offers submitted nationally for enrollment in the 

Conservation Reserve Program (CRP) was used to identify heterogeneity in opportunity cost of 
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potential biomass cropland within each region. My empirical results indicate that incorporating 

location-specific biomass supply conditions creates unique and important economic tradeoffs within 

each CRD. The cost-minimizing biorefinery production conditions, including capacity, vary 

significantly across locations. These differences have important impacts on the potential supply and 

distribution of U.S. cellulosic biofuel production. Accounting for observed heterogeneity in land 

opportunity costs captured variation in the aggregate switchgrass ethanol supply curve not otherwise 

obtained. 

Several implications arise from these results. First, ignoring local trade-offs in biomass 

procurement may lead to a significant under- or over-estimate of the quantity and cost of U.S. 

cellulosic biofuel production. If incorporated into models used to simulate bio-energy policy shocks, 

the economic welfare impacts from cellulosic biofuel policies may be seriously distorted. Further, 

biased cost estimates may distort the relative attractiveness of cellulosic biofuel to competing energy 

technologies such as hydrogen, oil shale-derived fuels, tar sands-derived fuels, coal-to-liquids, and 

electricity. Second, sensitivity of biofuel production costs to landowner willingness to consider 

biomass production suggests raising landowner awareness of the benefits from biomass production 

may be an important step in the feasibility of commercial scale production. Finally, the costs of 

ethanol production were found to be sensitive to transportation cost, conversion plant economies of 

scale, and biomass conversion technology. 

The chapters within this dissertation, although each written as a stand-alone paper, contribute 

to a growing body of literature on the economics of second generation biofuel and provide insight 

into important economic trade-offs that will be encountered in the development of a U.S. cellulosic 

biofuel industry.   
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 2 

Appendix A.1 – Timeline of federal ethanol policies and major events 

Year Policy/Event 

1862 Union Congress imposed a $2.08 per gallon tax on ethanol to fund Civil War
105

 

1906 Tax on ethanol removed 

1919 18
th

 Amendment to the U.S. Constitution  

 Prohibition  

1973 Arab oil embargo leads to the 1973 Oil Crisis  

1973 EPA announces phase-out of lead in all grades of gasoline  

1978 Energy Tax Act of 1978  

 Excise tax exemption for ethanol equivalent to 40 cents per gallon blended ethanol 

1979 Events surrounding the Iranian Revolution lead to a second energy crisis 

1980 Import tariff imposed on foreign-produced biofuels 

1980 Energy Security Act (ESA)  

 Official definition for gasohol  

 Price guarantees for biomass energy projects and loan guarantees to small ethanol 

producers 

Gasohol Competition Act  

 Prohibited discrimination against sale of gasohol 

Crude Oil Windfall Profit Tax Act 

 Extended excise tax credit equivalent to $0.40 per gallon ethanol  

1982 Surface Transportation Assistance Act  

 Increased excise tax credit to $0.50 per gallon ethanol  

1984 Tax Reform Act  

 Increased excise tax credit to $0.60 per gallon ethanol  

1988 Alternative Motor Fuels Act (AMFA)  

 CAFE credits provided to manufacturers of flexible fuel vehicles 

1990 Omnibus Budget Reconciliation Act of 1990 

 Reduced excise tax credit to $0.54 per gallon ethanol  

 Additional $0.10 per gallon tax credit for small producers (less than 30 mgy) 

 Clean Air Act Amendments (CAAA) 

 Required oxygenated fuel use in certain areas during winter months 

1992 Energy Policy Act (EPAct 1992)  

 Defined fuel types that qualified as alternative fuels 

 Tax deductions for vehicles purchased or converted to operate on alternative fuels 

 Required federal and state vehicle fleets to contain 75% alternative fuel vehicles 

1998 Transportation Efficiency Act of the 21
st
 Century (TEA-21) 

 Extended ethanol tax credit through 2007 with gradual reductions from $0.54 to $0.51 

cents by 2005 

2000 EPA recommends national phase-out of MTBE 

2001 Ethanol tax credit reduced to $0.53 per gallon in agreement with TEA-21 

2003 Ethanol tax credit reduced to $0.52 per gallon in agreement with TEA-21 

2004 Job Creation Act  

 Ethanol excise tax credit modified into a blender’s tax credit termed the Volumetric 

Ethanol Excise Tax Credit (VEETC) 

 VEETC extended to 2010  

                                                      
105

 The alcohol tax passed by the Union Congress was intended as a tax on consumption alcohol. Since no 

exemptions were extended, the tax also applied to fuel ethanol. 
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Appendix A.1 continued 

2005 VEETC reduced to $0.51 per gallon in agreement with TEA-21 

EPAct 2005 

 Eliminated oxygenate fuel requirement from 1990 CAAA 

 Introduced Renewable Fuels Standard (RFS) which required increasing volumes of 

renewable fuel use up to 7.5 bgy in 2012 

 Modified definition of “small ethanol producer” from 30 to 60 mgy 

2007 Energy Independence and Security Act (EISA) 

 Introduced Revised Renewable Fuels Standard (RFS2) with higher annual volumes of 

renewable fuel use that increase up to 36 bgy in 2022 

 GHG reduction standards for each biofuel subcategory  

2008 Food, Conservation, and Energy Act of 2008 (2008 Farm Bill) 

 Funded several programs for renewable energy, biobased products, and bioenergy 

 Reduced VEETC to $0.45 per gallon starting in 2009 

 Established cellulosic biofuel producer tax credit of $1.01 per gallon 

 Biomass Crop Assistance Program (BCAP) 

2009 American Reinvestment and Recovery Act (Recovery Act) 

 Funded bioenergy research projects including development of pilot, demonstration, and 

commercial-scale biorefineries 

2011 Senate voted to repeal the tax credit and tariff for conventional ethanol (June 16) 

 Tax credit and tariff expired on December 31 
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Appendix A.2 – Biomass-to-ethanol production processes for lignocellulosic feedstocks 

Several methods exist to convert biorenewable resources into biofuel. Multiple methods are 

necessary for the different types of biorenewable resources which can be converted into ethanol (see 

Section 2.5). The different types of biomass can be broken into three main categories: sugar crops, 

starch based crops, and lignocellulosic feedstocks. Sugar crops have shown to be an economical 

source for fuel transportation in Brazil but have not developed in the United States due to sugar 

subsidies (Brown, 2003). Currently, the United States ethanol industry is based on starch-based 

feedstocks (ex: corn). This section will describe the different processes available for lignocellulosic 

ethanol production.  

Lignocellulosic biomass is composed of three materials: cellulose, hemicellulose, and lignin. 

Cellulose and hemicellulose can be converted into ethanol, while lignin is a byproduct of the ethanol 

production process which can be burned to generate electricity in certain processes used. Corn 

residues contain approximately 38%, 32% and 17% of cellulose, hemicellulose, and lignin, 

respectively (Kaylen M. , Van Dyne, Choi, & Blase, 2000). Table A.2.1 provides the composition for 

other potential biofuel feedstocks.  

Table A.2.1 – Cellulose, hemicellulose, and lignin content in potential biofuel feedstocks 

Agricultural residue Cellulose Hemicellulose Lignin 

Hardwood stem 40-50 24-40 18-25 

Softwood stem 45-50 25-35 25-35 

Corn cobs 45 35 15 

Grasses 25-40 35-50 10-30 

Wheat straw 33-40 20-25 15-20 

Rice straw 40 18 5.5 

Leaves 15-20 80-85 0 

Cotton seed hairs 60 20 20 

Switchgrass 30-50 10-40 5-20 

Paper 85-99 0 0-15 

Source: Prasad et al., (2007) Table 4, page 6 

The conversion of lignocellulosic feedstocks into ethanol consists of four main steps: 

pretreatment, hydrolysis, fermentation, and distillation (Figure A.2.1). 
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Figure A.2.1- Biomass-to-ethanol conversion process 

 

Pretreatment 

Pretreatment is used to increase the efficiency of subsequent stages of production. There are 

four main goals in pretreatment (Sun & Cheng, 2002, p. 2):  

“ 1) improve the formation of sugars or the ability to subsequently form sugars by 

enzymatic hydrolysis; 

2) avoid the degradation or loss of carbohydrate; 

3) avoid the formation of byproducts inhibitory to the subsequent hydrolysis and 

fermentation processes; and  

4) be cost effective.” 

Utilizing a cost-effective pretreatment process is essential – pretreatment costs are 

approximately 1/3 of total processing costs. During pretreatment, the feedstock is sized, typically 

using hammer mills. The process of size reduction, called comminution, increases the surface area of 

the material in order to become more susceptible to hydrolysis (Brown, 2003). 

The extensiveness and method of pretreatment will depend on the subsequent hydrolysis 

method. Described in more detail in the following section, there are two main categories of 

hydrolysis: acid-based and enzymatic hydrolysis. Preliminary comminution is sufficient for acid 

hydrolysis, but to increase yield, some additional pretreatment is typically employed. Additional 

pretreatment is necessary for enzymatic hydrolysis. Sugar yields are only 20% with initial sizing and 

increase to over 90% with additional pretreatment methods (Brown, 2003). There are several 

pretreatment methods, each with advantages and disadvantages. Categories for pretreatment methods 

include: biological, alkaline, steam explosion, pre-hydrolysis, ammonia fiber explosion, and treatment 

with organic solvents. Each of these pretreatment methods is considered in the following subsections.  

Biological 

Biological pretreatments use microorganisms that decompose the lignin from the 

lignocellulosic matter. This allows the cellulose and hemicellulose to release (Brown, 2003). The 

biological pre-treatment process currently available utilizes fungi. Yet, the low hydrolysis rate of 

fungi pre-treatment may offset the benefits of low energy use and lack of environmental concerns 

(Hamelinck, van Hooijdonk, & Faaij, 2005). Other disadvantages include the long reaction time and 

lower yields if organisms grow on the resulting sugars. Overall, biological pretreatments are not fully 

developed (Brown, 2003). 

Biomass Pretreatment Hydrolysis Fermentation Distillation Ethanol 
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Alkaline 

Alkaline pretreatment dissolves lignin and hemicelluloses and can potentially swell cellulose 

(Brown, 2003). Typical alkaline pretreatment utilizes a base such as sodium hydroxide or calcium 

hydroxide (Hamelinck, van Hooijdonk, & Faaij, 2005). Even with the benefits of dissolving lignin, 

the destroyed hemicellulose is a significant loss in fermentable sugar. Another major disadvantage of 

this process is the amount of chemicals consumed to neutralize the acidic carboxylic groups in the 

biomass (Brown, 2003). 

Steam Explosion 

Steam explosion uses high-pressure steam to penetrate the pores of the plant material 

followed by rapid decompression. The explosive expansion increases the accessibility during 

hydrolysis (Brown, 2003). This is one of the more promising pretreatment methods but developments 

are needed to increase yield and decrease costs (Hamelinck, van Hooijdonk, & Faaij, 2005). 

Pre-hydrolysis 

Pre-hydrolysis is characterized by the addition of small amounts of mineral acids. The most 

common mineral acid used in pre-hydrolysis is sulfuric acid. The biomass is treated with the mineral 

acid and incubated for approximately 30 minutes. This pretreatment method improves the hydrolysis 

of hemicellulose at lower temperatures and increases the enzymatic digestibility of the cellulose as 

high as 90%. An alternative option is sulfur dioxide, which is less corrosive than sulfuric acid. One 

advantage of this pretreatment method is the byproduct furfural. Furfural has value in both the oil 

refining market as a solvent and the carpet industry. The disadvantages include the need to neutralize 

the acidified biomass and the possibility of sugar decomposition. Pre-hydrolysis is also commonly 

referred to as: dilute acid pretreatment or acid-catalyzed steam explosion (Brown, 2003). 

Ammonia Fiber Explosion (AFEX) 

AFEX uses a similar process to steam explosion but utilizes liquid ammonia. The mixture is 

incubated for several minutes to an hour, which allows the ammonia to penetrate. Hydrolysis yields 

range from 80-90% of theoretical. One disadvantage is that AFEX has not been successful for either 

hardwoods or softwoods (Brown, 2003). 

Organic Solvents 

Organic solvents are used to remove lignin from biomass. Removal of lignin can decrease the 

requirement of costly enzymes in subsequent processing, specifically enzymatic hydrolysis. Lignin 

that is not removed will absorb significant amounts of enzymes and inhibit the efficiency of 
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hydrolysis. Organic solvents are sometimes used in conjunction with acidic or alkaline pretreatment 

methods (Brown, 2003). 

Hydrolysis 

The second step in the biomass-to-ethanol process is hydrolysis. During hydrolysis, the 

cellulose portion of the biomass is converted into sugar. The three methods for hydrolysis include: 

concentrated acid, dilute acid, and enzymatic. As noted earlier, acidic methods do not need extra 

pretreatment but enzymatic hydrolysis must be preceded with extensive pretreatment to separate the 

lignin, hemicellulose, and cellulose (Brown, 2003). 

Concentrated-acid 

The concentrated-acid hydrolysis method is relative simple and produces sugar yields which 

approach 100% of theoretical. In order to ferment, the solution is diluted and heated to a boiling point 

for four hours. The solution is then neutralized with limestone and allowed to ferment. The two acids 

available at a commercial level are sulfuric acid and hydrochloric acid. The benefit of sulfuric acid is 

the low cost compared to hydrochloric acid. Yet, the disadvantages include the large volume 

requirement and the complicated recovery process due to its high boiling point. Hydrochloric acid, 

though more expensive and corrosive, has a higher volatility which presents better recovery 

opportunities during distillation (Brown, 2003). 

Dilute-acid 

Dilute-acid hydrolysis uses significantly less acid to hydrolyze the lignocellulosic matter than 

concentrated-acid hydrolysis. Dilute-acid hydrolysis is accelerated by operating at higher 

temperatures, but this causes the decomposition of oligosaccharides released from the lignocellulose, 

ultimately reducing yields to only 55-60% of theoretical. Another disadvantage of this process is the 

large number of microbial toxins that are produced, such as acetic acid and furfural, which can inhibit 

fermentation of sugars. Dilute-acid hydrolysis also needs corrosion-resistant equipment which 

increases production costs (Brown, 2003). 

Enzymatic 

Enzymatic hydrolysis was initially developed to capture a higher percentage of the cellulose 

and hemicellulose components. The cellulosic bonds are broken apart by a mixture of enzymes called 

cellulase (Brown, 2003). Hamelinck et al. (2005, p. 392) described cellulase as a “complex mix of 

enzymes that work together synergistically to attack typical parts of the cellulose fibre.” Depending 

on the composition of the matter, hemicellulase might also be used to break down any hemicellulose 
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left over from the pretreatment process. Disadvantages include relatively low specific activity which 

leads to high enzyme requirements and slow rates of conversion (Brown, 2003). 

Fermentation 

Fermentation follows hydrolysis. Fermentation is defined as a biological process in which 

enzymes produced by microorganisms catalyze energy-releasing reactions that break down complex 

organic substrates (Brown, 2003). The first step in fermentation is the detoxification of the 

hydrolysate. During detoxification, toxic compounds such as furfural and acetic acid that would 

inhibit the growth of fermentation organisms are removed. There are many yeast species and a few 

bacteria that can efficiently ferment six-carbon sugars such as corn starch to ethanol, but 

lignocellulosic matter has five-carbon sugars, which require a more complex fermentation process. 

There have been 3 approaches developed for fermenting lignocellulosic sugars: separate hydrolysis 

fermentation (SHF), simultaneous saccharification and fermentation (SSF), and direct microbial 

conversion (DMC) (Brown, 2003). 

Separate Hydrolysis Fermentation (SHF) 

Separate hydrolysis fermentation (SHF) separates pre-hydrolysis, enzymatic hydrolysis, and 

fermentation. This separation helps to avoid undesirable interactions during the different steps. One 

major disadvantage to this method is that it requires lower solids loadings in order to obtain 

reasonable yields (Brown, 2003). 

Simultaneous Saccharification and Fermentation (SSF) 

Simultaneous saccharification and fermentation (SSF) combines hydrolysis and fermentation. 

By combining these two stages, glucose is rapidly removed before it can inhibit further hydrolysis. 

During SSF, the biomass feedstock is first milled and then pre-hydrolyzed. The mixture from pre-

hydrolysis is then neutralized with limestone. It is then mixed with enzymes, hemicellulose, and 

cellulase along with yeast and nutrients. The cellulose and remaining hemicellulose are solubilized 

and fermented into ethanol. During this process, the lignin is separated and used as a boiler fuel 

(Brown, 2003). 

Direct Microbial Conversion (DMC) 

Direct microbial conversion (DMC) combines cellulase production, cellulose hydrolysis, and glucose 

fermentation into one step. The advantages of DMC are the low number of reactors, the simple 

operation, and the reduction of chemical costs. The disadvantages include the low product yield, 

undesirable metabolic by-products, and product inhibition. This process needs future development in 

order to become economically viable (Brown, 2003). 
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Distillation 

The last step in conversion of lignocellulosic matter to ethanol is distillation. Fermentation 

may generate gas, precipitate, and/or water-soluble compounds. The gaseous or precipitated products 

can easily be separated from the “beer.” The water-soluble compounds that are not easily separated 

from the beer are recovered through the distillation process. Distillation is an energy-intensive 

process completed in multiple phases. The first distillation yields ethanol (55%) and stillage bottoms. 

These stillage bottoms are marketable as animal feed, also known as distillers grains and solubles. 

The second distillation yields ethanol (95-96%) and water azeotrope. Some production processes stop 

at this point. If water-free ethanol is desired, the liquid can be purified using several different methods 

including further distillation. Criticisms that ethanol consumes more energy than it produces stem 

mostly from the distillation process which is an energy-intensive operation. Yet, recent technology 

has reduced these concerns (Brown, 2003). 
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 3 

 

Appendix B.1 – Summary of BioBreak application parameter assumptions 

Summary of parameter assumptions for processor derived demand (DD) 

Price of oil (Poil) 

A critical parameter of the processor’s breakeven price is the price of oil. Based on Cushing Crude 

Spot Prices (2010), oil escalated to $145 per barrel in July 2009 but dropped to $30 per barrel by the 

end of 2008. The price increased to $48 per barrel the first week of 2009 and ended 2010 at $90. 

Given the high volatility in crude oil spot prices, rather than simulating or specifying a single price 

for oil, this analysis considers three oil price levels: $50, $100, and $150 per barrel.  

Energy equivalent factor (EV) and octane value (VO) 

Per unit, ethanol provides a lower energy value than gasoline. The energy equivalent ratio (EV) for 

ethanol to gasoline is assumed fixed at 0.667.
106

 While it has a lower energy value than pure gasoline, 

ethanol is an octane enhancer. Blending gasoline with ethanol, even at low levels, will increase the 

fuel’s octane value. For simplicity, the octane enhancement value (VO) is fixed at $0.10 per gallon.  

Co-product value (VC) 

For co-product value (VC), this analysis assumes excess energy is the only co-product from the 

proposed biorefinery. Aden et al. (2002) estimated corn stover cellulosic ethanol production yields 

excess energy value of approximately $0.14-$0.21, after updating to 2007 energy costs (U.S. EIA, 

2008). Without specifying the source of co-product value, Khanna & Dhungana (2007) used an 

estimate of around $0.16 per gallon for cellulosic ethanol.
107

 Huang et al. (2009) found switchgrass 

conversion yields the largest amount of excess electricity followed by corn stover and aspen wood. 

Assuming current technology and 2007 costs, Kazi et al. (2010b) estimate a stover biochemical plant 

will produce 4.06 kWh of excess electricity per gallon corresponding to a co-product value of $0.22 

per gallon. Corn stover ethanol is assumed to have a fixed co-product value of $0.22 per gallon, while 

switchgrass, Miscanthus, wheat straw, and alfalfa have a value of $0.24 per gallon and woody 

biomass has a value of $0.20 per gallon.  

                                                      
106

 Elobeid, Tokogz, Hayes, Babcock, & Hart (2006); Tokgoz et al. (2007) 
107

 Updated to 2007 costs 
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Conversion ratio (YO) 

The conversion ratio of ethanol from biomass (YO) is expected to vary based on feedstock type (i.e. 

cellulose, hemicellulose, and lignin content), conversion process, and biorefinery efficiency. Research 

estimates for the conversion ratio have ranged from as low as 55 gallons per ton to theoretical values 

as high as 140 gallons per ton.
108

 Eliminating theoretical values and outliers on either end, the 

reported range for the conversion ratio is approximately 65-100 gallons per dry ton. Based on the 

large variation within the research estimates, a conversion ratio with a mean value of 70 gallons per 

ton is assumed to be representative of current and near future technology.
109

 A conversion rate of 70 

gallons per ton for near-term technology is consistent with the value estimated by Kazi et al. (2010b) 

for stover cellulosic ethanol production by fermentation in the next 5-8 years. An increase in the long-

run conversion ratio to 80 gallons per ton is considered within the sensitivity analysis.  

Biorefinery investment costs (CI)  

Investment or capital costs for a biorefinery have been estimated to be four to five times higher than 

starch-based ethanol plants of similar size (Wright & Brown, 2007). The biorefinery cost estimates 

used in this model are based on research estimates and costs provided by Kazi et al. (2010b) for a 

53.4 million gallon per year corn stover ethanol refinery utilizing dilute acid prehydrolysis with 

saccharification and cofermentation. Cost estimates were based on a biorefinery with a 20 year life 

span that processes 2,205 tons of corn stover per day and operates 350 days per day at a conversion 

rate of 69.5 gallons of ethanol per ton of stover. The biorefinery is assumed to outsource stover 

harvest, delivery, and long-term storage. Investment costs include on-site storage infrastructure 

capable of handling up to 72 hours of corn stover supply. Given these assumptions, the total capital 

costs for the biorefinery outline by Kazi et al. (2010b) were $375.9 million (2007$). We assume no 

down payments and amortize the investment cost over 20 years at 10% to derive an investment cost 

of $0.82 per gallon. Assuming no down payments and an interest rate of 10%, we do not explicitly 

                                                      
108

 Aden et al. (2002); Atchison & Hettenhaus (2003); BRDI (2008); Chen, Huang, Khanna, & Onal (2010); 

Comis (2006); Crooks (2006); Huang, Ramaswamy, Al-Dajani, Tschirner, & Cairncross (2009); Kazi et al. 

(2010a); Khanna (2008); Khanna & Dhungana (2007); Krissek (2008); McAloon, Taylor, Yee, Ibsen, & 

Wooley (2000); Perlack & Turhollow (2002); Petrolia (2008); Tiffany, Jordan, Dietrich, & Vargo-Daggett 

(2006); Tokgoz et al. (2007) 
109

 Ethanol yields vary by feedstock but we were unable to find consistent yield patterns across studies, 

especially given the lack of commercial cellulosic ethanol plant yield information. Even though woody biomass 

has a higher lignin yield, some studies also assign a relatively high ethanol yield. With a wide range of 

estimates for both herbaceous crops and woody biomass and the lack of commercial yield estimates, we chose a 

conservative approach by assuming the same yield for all feedstock, similar to the ALTF Report (2009). The 

model has been estimated with varying ethanol yield by feedstock and results are available upon request.  
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include deprecation costs or minimum average return on investment. For this analysis, biorefinery 

capital investment costs are assumed to follow a normal distribution with a mean value of $0.82 per 

gallon.  

Operating costs (CO)  

Operating costs are separated into two components: enzyme costs and non-enzyme operating costs. 

Non-enzyme operating costs, including salaries, overhead, maintenance, insurance, taxes, and other 

conversion costs, are fixed at $0.92 per gallon based on the cost estimates provided in Kazi et al. 

(2010b).
110

 Discussions with industry sources indicate enzyme costs may run between $0.40 and 

$1.00 per gallon given current yields and technology. The decrease in enzyme costs to $0.10 per 

gallon anticipated by Aden et al. (2002) has not materialized. To be consistent with the biorefinery 

used for non-operating and investment costs, the enzyme cost from Kazi et al. (2010b) of $0.70 per 

gallon are used for the mean value in this analysis.  

Government incentives (GP) 

Growing concern over climate change as well as energy security and independence has resulted in 

various incentives and mandates for renewable fuels. Tax credits have been the primary financial 

incentive provided to biofuel producers. To account for potential tax credits for cellulosic ethanol 

producers, sensitivity analysis considers the current tax credit for cellulosic ethanol producers 

designated by the Food and Energy Security Act of 2007 of $1.01 per gallon and denote this as the 

“producer’s tax credit.” 

Summary of parameter assumptions for biomass supply cost (SC) 

Nutrient replacement (CNR) 

Uncollected cellulosic material adds value to the soil through protection against rain, wind, and 

radiation, therefore limiting erosion. Biomass suppliers will incorporate the costs of soil damage and 

nutrient loss from biomass collection into the minimum price they are willing to accept. Nutrient 

replacement cost (CNR) varies by feedstock and harvest technique. After adjusting for 2007 costs,
111

 

                                                      
110

 The operating cost used in this analysis is derived from the operating costs presented in Appendix Table D-1 

in Kazi et al. (2010a) excluding feedstock, cellulose, depreciation, and return on investment costs and electricity 

credits.  
111

 Nutrient and replacement costs were updated using USDA NASS Agricultural Fertilizer Prices from 1999-

2007 (NASS, 2007a; 2007b). 
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estimates for nutrient replacement costs range from $5 to $21 per ton.
112

 Given the research estimates, 

nutrient replacement is assumed to have a mean (likeliest) value of $13.60 ($14.60) per ton for stover, 

$15.60 ($16.60) per ton for switchgrass, $8.35 per ton for Miscanthus,
113

 and $5.6 per ton for wheat 

straw. Alfalfa is assumed to have a two year stand with first-year nutrient costs incorporated into the 

establishment costs discussed below and a cost of $62.50 per acre for second year nutrient 

application. Given the yield assumptions, $60 per acre corresponds to approximately $15.60 per ton 

for second year alfalfa. Nutrient replacement is assumed unnecessary for woody biomass. 

Harvest and maintenance costs (CHM) and stumpage fees (SF) 

Harvest and maintenance cost (CHM) estimates for cellulosic material have varied based on harvest 

technique and feedstock. Non-custom harvest research estimates range from $14 to $84 per ton for 

corn stover,
114

 $16 to $58 per ton for switchgrass
115

 and $19 to $54 per ton for Miscanthus,
116

 after 

adjusting for 2007 costs.
117

 Estimates for non-specific biomass range between $15 and $38 per ton.
118

 

Woody biomass collection costs up to roadside range between $17 and $50 per ton.
119

 Spelter & Toth 

(2009) find total delivered costs (including transportation) around $58, $66, $75, and $86 per dry 

ton
120

 for woody residue in the Northeast, South, North, and West regions, respectively.  

Using the timber harvesting cost simulator outlined in Fight, Hartsough, & Noordijk (2006), 

Sohngen, Anderson, Petrova, & Goslee (2010) found harvest costs up to roadside around $25 per dry 

ton, with a high cost scenario of $34 per dry ton. For simulation, harvest and maintenance costs are 

                                                      
112

 Aden et al. (2002); Atchison & Hettenhaus (2003); Brechbill & Tyner (2008a); Hoskinson, Karlin, Birrell, 

Radtke, & Wilhelm (2007); Huang et al. (2009); Karlen (2010); Karlen & Birrell (Presentation); Khanna & 

Dhungana (2007); Khanna, Dhungana, & Clifton-Brown (2008); Perlack & Turhollow (2003); Perrin, Vogel, 

Schmer, & Mitchell (2008); Petrolia (2008) 
113

 The nutrient replacement cost for Miscanthus is based on the recommended fertilizer replacement rates 

summarized in Khanna, Dhungana, & Clifton-Brown (2008). The mean value used in simulation was derived 

using the average fertilizer rates and costs (updated to 2007) reported by Khanna, Dhungana, & Clifton-Brown 

(2008).  
114

 Aden et al. (2002); Brechbill & Tyner (2008a); Edwards (2007); Hess, Wright, & Kenney (2007); Huang et 

al. (2009); Khanna (2008); McAloon, Taylor, Yee, Ibsen, & Wooley (2000); Perlack (2007, Presentation); 

Sokhansanj & Turhollow (2002); Suzuki (2006) 
115

 Brechbill & Tyner (2008a); Duffy (2007); Huang et al. (2009); Khanna (2008); Khanna & Dhungana (2007); 

Khanna, Dhungana, & Clifton-Brown (2008); Kumar & Sokhansanj (2007); Perrin et al. (2008); Tiffany et al. 

(2006) 
116

 Khanna (2008); Khanna & Dhungana (2007); Khanna, Dhungana, & Clifton-Brown (2008) 
117

 Harvest and maintenance costs were updated using USDA NASS Agricultural fuel, machinery and labor 

prices from 1999-2007 (NASS, 2007a; 2007b).  
118

 Mapemba, Epplin, Taliaferro, & Huhnke (2007); Mapemba, Epplin, Huhnke, & Taliaferro (2008) 
119

 BRDI (2008); Jenkins et al. (2009); Sohngen, Anderson, Petrova, & Goslee (2010); USDA Forest Service 

(2003; 2005) 
120

 Based on a conversion rate of 0.59 dry tons per green tons. 
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assumed to have mean (likeliest) values of $43 ($46), $36 ($38), $45 ($48), $31.5 ($33), and $26 for 

stover, switchgrass, Miscanthus, wheat straw, and woody biomass, respectively. Alfalfa is assumed to 

be harvested once during the first year and three times during the second year at a cost of $55 per acre 

per harvest. In addition to harvest costs, farmed tree suppliers incur a stumpage fee (SF) with an 

assumed mean value of $20 per ton.  

Transportation costs (t, DFC, and D) 

Previous research on transportation of biomass has provided two distinct types of cost estimates: (1) 

total transportation cost; and (2) breakdown of variable and fixed transportation costs. Research 

estimates for total corn stover transportation costs range between $3 per ton and $32 per ton.
121

 Total 

switchgrass and Miscanthus transportation costs have been estimated between $14 and $36 per ton,
122

 

adjusted to 2007 costs.
123

 Woody biomass transportation costs are expected to range between $11 and 

$30 per dry ton.
124

 Based on the second method, distance variable cost (t) estimates range between 

$0.09 and $0.60 per ton per mile,
125

 while distance fixed cost (DFC) estimates range between $4.80 

and $9.80 per ton,
 126

 depending on feedstock type. BioBreak utilizes the latter method of separating 

fixed and variable transportation costs.  

The DFC for corn stover, switchgrass, Miscanthus, wheat straw, and second year alfalfa is assumed to 

range from $5 to $12 per ton with a mean value of $8.50 per ton. Besides loading and unloading 

costs, woody biomass requires an on-site chipping fee. Therefore, the DFC for woody biomass is 

assumed to have a mean value of $10 per ton. Distance variable cost (t) is assumed to follow a 

skewed distribution to account for future technological progress in transportation of biomass with a 

mean (likeliest) value of $0.35 ($0.38) per ton per mile for stover, switchgrass, Miscanthus, wheat 

straw, and second year alfalfa and $0.50 (0.53) per ton per mile for woody biomass.  
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One-way transportation distance (D) has been evaluated up to 140 miles for woody biomass
127

 and 

between 5 and 75 miles
128

 for all other feedstocks. In the BioBreak program, the average hauling 

distance is calculated using the formulation by French (1960) for a circular supply area with a square 

road grid provided in the equation below. Average distance (D) is a function of the annual biorefinery 

biomass demand (Q), annual biomass yield (YB), and biomass density (d).  

        √
 

        
    

Annual biomass demand is assumed to be consistent with the biorefinery outlined for capital and 

operating cost distributions (771,750 tons per year). Biomass density is assumed to follow a normal 

distribution with a mean value of 0.20 for all feedstocks with the exception of alfalfa which has a 

biomass density of 0.15.
129,130

   

Storage costs (CS) 

Due to the low density of biomass compared to traditional cash crops such as corn and soybeans, 

biomass storage costs (CS) can vary greatly depending on the feedstock type, harvest technique, and 

type of storage area. Adjusted for 2007 costs, biomass storage estimates range between $2 and $23 

per ton.
131,

 
132

 For simulation, storage costs are assumed to follow a skewed distribution for all 

feedstocks to allow for advancement in storage and densification techniques. The mean (likeliest) cost 

for woody biomass storage is $11.50 ($12) per ton, while corn stover, switchgrass, Miscanthus, wheat 

straw, and alfalfa storage costs are assumed to have mean (likeliest) values of $10.50 ($11) per ton.  

Establishment and seeding costs (CES) 

Corn stover, wheat straw, and forest residue suppliers are assumed to not incur establishment and 

seeding costs (CES), while all other feedstock suppliers must be compensated for their establishment 
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 Although the biomass density for a corn-soybean rotation is assumed to be 0.20, the value used to calculate 
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and seeding costs. Costs vary by initial cost, stand length, years to maturity, and interest rate. Stand 

length for switchgrass ranges between 10 and 20 years
133

 with full yield maturity by the third year.
134

 

Miscanthus stand length ranges from 10 to 25 years
135

 with full maturity between the second and fifth 

year.
136

 Interest rates used for amortization of establishment costs within the literature range between 

4 and 8%.
137

 Amortized cost estimates for switchgrass establishment and seeding, adjusted to 2007 

costs,
138

 are between $30 and $200 per acre.
139

 Miscanthus establishment and seeding cost estimates 

vary widely, based on the assumed level of technology and input costs. James, Swinton, & Thelen 

(2010) report a total rhizome cost (not including equipment and labor) of $8,194 per acre as 

representative of current costs and $227.61 per acre for a projected cost estimate after technological 

advancement (2008$). Lewandowski, Scurlock, Lindvall, & Christou (2003) provide a cost range of 

$1206-2413 per acre (not updated). Jain, Khanna, Erickson, & Huang (2010) estimate the cost of 

Miscanthus establishment in Illinois to be around $1200 per acre for rhizomes and $1215-1650 per 

acre for plugs. Establishment costs for wood also vary by species and location. Cubbage et al. (2010) 

report establishment costs of $386-$430 for yellow pine and $520 per acre for Douglas Fir (2008$).  

Given the research estimates, switchgrass establishment and seeding costs in this analysis are based 

on a $250 per acre cost, amortized over 10 years at 10% to yield a mean value of $40 per acre per 

year in all regions. Miscanthus establishment and seeding cost is assumed to have a mean value of 

$150 per acre per year based on an initial cost of $1250 per acre amortized over 20 years at 10%. 

Establishment of alfalfa is assumed fixed at $165 per acre, including fertilizer application. Finally, 

farmed trees are assumed to cost $400 per acre to establish and amortized over 15 years at 10% to 

yield a mean value of $52 per acre per year. 
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Opportunity costs (COpp) 

To provide a complete economic model, BioBreak includes opportunity costs of utilizing biomass for 

ethanol production. Research estimates for corn stover opportunity cost range between $22 and $143 

per acre,
140

 while the opportunity cost of switchgrass and Miscanthus are significantly higher with 

estimates ranging between $70 and $318 per acre.
141

 Estimates for non-specific biomass opportunity 

cost range between $10 and $76 per acre,
142

 depending on the harvest restrictions under CRP 

contracts. Opportunity costs of woody biomass are estimated to range between $0 and $30 per ton.
143

  

Corn stover from a corn-soybean rotation is assumed to have no opportunity cost beyond nutrient 

replacement cost but corn stover from continuous corn production incurs the forgone profits from 

switching to continuous corn production from a corn-soybean rotation. Using the rotation calculator 

provided by the Iowa State University Extension services and assuming a corn price of $4 per bushel, 

soybean price of $10 per bushel, and a yield penalty of 7 bushels per acre when switching from a 

corn-soybean rotation to continuous corn production, the lost net returns to switching equate to 

around $62 per acre.
144

 Therefore, a mean value of $62 per acre is used for the opportunity cost of 

stover from continuous corn production. Given the research estimates for perennial grass opportunity 

cost, switchgrass and Miscanthus grown on Midwest land are assumed to have mean opportunity 

costs of $150 per acre on high quality and $100 per acre on low quality land. Perennial grasses grown 

in the Appalachian and South-Central regions are assumed to have lower mean opportunity costs of 

$75 and $50 per acre, respectively. Wheat straw opportunity cost is assumed to follow a distribution 

with likeliest value of $2.8 per acre with a range of -$10 to $30 per acre. Negative values for the 

opportunity costs of wheat straw are based on the potential nuisance cost of wheat straw. 

Occasionally, straw is burned at harvest to avoid grain planting problems during the following crop 

season. Forest residue is assumed to have no value in an alternative use or no opportunity cost. While 

farmed trees have alternative use value, the stumpage fee is assumed to capture the opportunity cost. 

Finally, alfalfa is assumed to have a two year stand with first year harvest sold for hay at a value of 

$140 per ton. Second year alfalfa is assumed to have 50% leaf mass sold for protein value at $160 per 

ton while the remaining 50% is used as a biofuel feedstock. For both years, alfalfa opportunity cost 

(i.e. land cost) is assumed to be fixed at $175 per acre.  

                                                      
140
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141
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Brown (2008) 
142

 Khanna, Dhungana, & Clifton-Brown (2008); Mapemba et al. (2008) 
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 Biomass yield (YB) 

The final parameter in the model is biomass yield per acre of land. Biomass yield is variable in the 

near and distant future due to technological advancements and environmental uncertainties. Corn 

stover yield per acre will vary based on the amount of removable corn stover, which depends on soil 

quality and other topographical characteristics. Harvested corn stover yield has been estimated 

between 0.7 to 3.8 tons per acre.
145

 Potential switchgrass yields range between 0.89 and 17.8 tons per 

acre,
146

 depending on region, land quality, switchgrass variety, field versus plot trial studies, and 

harvest technique. On average, Miscanthus has significantly higher yield projections than switchgrass 

with estimates ranging between 3.4 and 28 tons per acre when both US and EU yield estimates are 

considered.
147

 U.S. Miscanthus yield estimates range between 9 and 28 tons per acre.
148

 For woody 

biomass, Huang et al. (2009) estimated Aspen wood yield of 0.446 dry tons per acre from a densely 

forested area in Minnesota, while the BRDI (2008) study assumed short-run woody crops yield 5 to 

12 tons per acre. Using USDA Forest Service Data for Mississippi, the average removal rate of wood 

residue in 2006 was around 1.1 tons per acres.
149

 In a recent study on 2008 wood production costs, 

Cubbage et al. (2010) estimate an annual yield of 3.6 and 4.3 tons per acre in North Carolina and the 

Southern United States, respectively. In the same analysis, Douglas Fir was estimated to provide 4 
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and 5.1 tons per acre annually in Oregon and North Carolina, respectively. For wheat straw, the BRDI 

(2008) study assumed a yield of 1 ton per acre.  

For simulation, the mean yield of corn stover is approximately 2 tons per acre. Switchgrass grown in 

the Midwest has a distribution with a mean (likeliest) value around 4 (3.4) tons per acre on high 

quality land and 3.1 tons per acre on low quality land.
150

 Miscanthus grown in the Midwest is 

assumed to have a mean (likeliest) value of 8.6 (8) tons per acre on high quality land and 7.1 (6) tons 

per acre on low quality land.
151

 Switchgrass grown in the South-Central region has a higher mean 

yield of around 5.7 tons per acre. For the regions analyzed, the Appalachian region provides the best 

climatic conditions for switchgrass and Miscanthus with assumed mean (likeliest) yields of 6 (5) and 

8.8 (8) tons per acre, respectively. Wheat straw, forest residues, and farmed trees are assumed to have 

mean yields of 1, 0.5, and 5 tons per acre, respectively. First year alfalfa yield is fixed at 1.25 tons per 

acre (sold for hay value), while second year yield is fixed at 4 tons per acre (50% sold for protein 

value) resulting in 2 tons per acre of alfalfa for biomass feedstock during the second year.  

Government incentives (GS) 

For biomass supply government incentives (GS), we account for the dollar for dollar matching 

payments provided in the Food, Conservation, and Energy Act of 2008 (i.e. 2008 Farm Bill) up to 

$45 per ton of feedstock for collection, harvest, storage and transportation and denote this as 

“CHST.” The CHST payment is considered within the sensitivity analysis rather than the baseline 

scenario since the program is temporary (two-year) and might not be considered in the supplier’s 

long-run analysis. Although the model is flexible enough to account for any additional policy 

incentives, the establishment assistance program outlined in the 2008 Farm Bill is not considered 

since implementation details are not finalized. 

  

                                                      
150

 Plot trials were evaluated at 80% of their estimated yield.  
151

 The Miscanthus yield assumptions used in this analysis are lower than previous research has assumed or 

simulated (Khanna & Dhungana, 2007; Khanna, Dhungana, & Clifton-Brown, 2008; Heaton, Clifton-Brown, 

Voight, Jones, & Long, 2004a). 
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Complete Parameter Distribution Assumptions 

Table B.1.1 – Processor DD parameter distribution assumptions 

Parameter Feedstock Mean Value in Baseline 

(Likeliest if Skewed) 

Distribution 

Oil price (POil) 

All 

$50/barrel 

$100/barrel 

$150/barrel 

Fixed 

(3 scenarios) 

EV All 0.667 Fixed 

Tax (T) All $1.01/gal Fixed 

Coproduct value (VC) Stover 

Switchgrass (All) 

Miscanthus (All) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa 

$0.22/gal 

$0.24/gal 

$0.24/gal 

$0.24/gal 

$0.20/gal 

$0.20/gal 

$0.24/gal 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Octane (VO) All $0.10/gal Fixed 

Capital cost (CI) All $0.82/gal Normal 

Operating costs (CO)    

Non-enzyme operating cost All $0.92/gal Fixed 

Enzyme cost All $0.70/gal Normal 

Yield (YO) All 70 gal/ton Normal 
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Table B.1.2 – Supplier SC parameter distribution assumptions 

Parameter Feedstock Mean Value 

(Likeliest if Skewed) 

Distribution 

Nutrient replacement (CNR) Stover 

Switchgrass (All) 

Miscanthus (All) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa (2
nd

 year) 

$13.6/ton ($14.6) 

$15.6/ton ($16.6) 

$8.35/ton 

$5.6/ton 

- 

- 

$62.5/acre ($15.6/ton) 

Min. Extreme 

Min. Extreme 

Normal 

Normal 

- 

- 

Fixed 

Harvest and maintenance (CHM) Stover 

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees  

Forest Residue 

Alfalfa  

$43/ton ($46) 

$36/ton ($38) 

$45/ton ($48) 

$31.5/ton ($33) 

$26/ton  

$26/ton 

$55/acre/harvest 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Normal  

Normal 

Fixed 

Stumpage fee (SF) Farmed Trees $20/ton Normal 

Distance fixed cost (DFC) Stover 

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees  

Forest Residue 

Alfalfa 

$8.50/ton 

$8.50/ton 

$8.50/ton 

$8.50/ton 

$10/ton 

$10/ton 

$8.50/ton 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Distance variable cost (t) Stover 

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees  

Forest Residue 

Alfalfa  

$0.35/ton/mile ($0.38) 

$0.35/ton/mile ($0.38) 

$0.35/ton/mile ($0.38) 

$0.35/ton/mile ($0.38) 

$0.50/ton/mile ($0.53) 

$0.50/ton/mile ($0.53) 

$0.35/ton/mile ($0.38) 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 
a
 Average hauling distance is calculated using the formulation by French (1960) for a circular supply area with a 

square road grid. 
b
 Equivalent to 2,205 tons per day delivered to a plant operating 350 days per year. 

c
 Switchgrass establishment seeding costs are amortized over 10 years at 10%, Miscanthus establishment and 

seeding costs are amortized over 20 years at 10%, and woody biomass costs are amortized over 15 years at 

10%. The values presented in the table are annual payments per acre. 
d
 All per acre costs are converted to per ton costs using the yield assumptions provided in the table. 

e
 First year with fertilization. 

f
 Midwest opportunity cost is assumed to be positively correlated with corn yield through stover yield with a 

correlation of 0.75. 
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Table B.1.2 – Continued 

Distance
a Stover (CC) 

Stover (CS) 

Stover/Alfalfa 

Alfalfa 

Switchgrass (MW) 

Switchgrass (MWlow) 

Switchgrass (App) 

Switchgrass (SC) 

Miscanthus (MW) 

Miscanthus (MWlow) 

Miscanthus (App) 

Wheat Straw 

Farmed Trees 

Forest Residue 

26 

36 

26 

43 

19 

21 

15 

16 

13 

14 

13 

37 

17 

53 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Annual biomass demand (BD) All 77,1750 tons
b 

Fixed 

Yield (YB) Stover  

Alfalfa (1
st
 year) 

Alfalfa (2
nd

 year) 

Switchgrass (MW) 

Switchgrass (MWlow) 

Switchgrass (App) 

Switchgrass (SC) 

Miscanthus (MW) 

Miscanthus (MWlow) 

Miscanthus (App) 

Wheat Straw 

Farmed Trees 

Forest Residue 

2.1 tons 

1.25 tons 

4 tons 

4 tons (3.4) 

3.1 tons 

6 tons (5) 

5.7 tons  

8.6 tons (8) 

7.1 tons (6) 

8.8 tons (8) 

1 ton 

5 tons  

0.5 tons 

Gamma 

Fixed 

Fixed 

Max. Extreme 

Log Normal 

Max. Extreme 

Beta 

Max. Extreme 

Max. Extreme 

Max. Extreme 

Normal 

Normal  

Normal 

Biomass density (B) Stover (CC) 

Stover (CS) 

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa 

0.20 

0.10 

0.20 

0.20 

0.20 

0.20 

0.20 

0.15 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

 Storage (CS) Stover (CC) 

Stover (CS) 

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa 

$10.50/ton ($11) 

$10.50/ton ($11) 

$10.50/ton ($11) 

$10.50/ton ($11) 

$10.50/ton ($11) 

$11.50/ton ($12) 

$11.50/ton ($12) 

$10.50/ton ($11) 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 

Min. Extreme 
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Table B.1.2 – Continued 

Establishment and seeding (CES)
c,d 

 Stover  

Switchgrass (all) 

Miscanthus (all) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa
e 

- 

$40/acre 

$150/acre 

- 

$52/acre 

- 

$165/acre 

- 

Log Normal 

Log Normal 

- 

Normal 

- 

Fixed 

Opportunity cost (COpp) Stover (CC) 

Stover (CS) 

Switchgrass (MW) 

Switchgrass (MWlow) 

Switchgrass (App) 

Switchgrass (SC) 

Miscanthus (MW) 

Miscanthus (MWlow) 

Miscanthus (App) 

Wheat Straw 

Farmed Trees 

Forest Residue 

Alfalfa (1
st
 year w/ fert) 

$62/acre 

- 

$150/acre
f 

$100/acre 

$75/acre 

$50/acre 

$150/acre 

$100/acre 

$75/acre 

$2.80/acre ($0) 

- 

- 

$175/acre 

Beta 

- 

Log Normal 

Log Normal 

Normal 

Normal 

Log Normal 

Log Normal 

Normal 

Max. Extreme 

- 

- 

Fixed 
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Appendix B.2 – Literature summary 

Table B.2.1 – Ethanol production research estimates 

Type of Cost Assumption Value cited Value in 2007 Reference 

Oil price  $60/barrel  Elobeid et al. (2006) 

Ethanol price Analysis range $1.50-$3.50/gal  Lambert & Middleton (2010) 

 Minimum for 

industry 

development 

$1.70/gal  

Lambert & Middleton (2010) 

 Historical trend Poil/29  Elobeid et al. (2006) 

EV  0.667  Elobeid et al. (2006) 

  0.667  Tokgoz et al. (2007) 

Tax credit Corn $0.45/gal $0.45/gal 2008 Farm Bill 

 Cellulosic $1.01/gal $1.01/gal 2008 Farm Bill 

Coproduct credit Cellulosic  $0.14-.21/gal
a 

Aden et al. (2002) 

   $0.16/gal
a 

Khanna & Dhungana (2007) 

  2.61 KWH/gal  Aden et al. (2002) 

  $0.12/gal
b
  Khanna (2008) 

 Rank from low 

to high excess 

electricity 

Aspen wood 

Corn stover 

Poplar 

Switchgrass 

 

Huang et al. (2009) 

 
Stover $0.22/gal $0.22/gal 

Kazi et al. (2010b) 

 
 4.06 kWh/gal 4.06 kWh/gal 

Kazi et al. (2010b) 

 
 

$0.054/kWh 

($0.03-0.06) 

$0.054/kWh 

($0.03-0.06) 

Kazi et al. (2010b) 

 Corn $0.48/gal  Khanna (2008) 

Investment cost 69.3 mgy $197.4 million  Aden et al. (2002) 

 55.5 mgy $231.7 million $231.7 million Aden (2008) 

 53.4 mgy $375.9 million $375.9 million Kazi et al. (2010b) 

 50 mgy $294 million  Wright & Brown (2007) 

 100 mgy $400 million  Taheripour & Tyner (2008) 

 Stover (70 mgy) 

 

SG (64 mgy) 

 

Hybrid Poplar 

(68 mgy) 

Aspen Wood 

(86 mgy) 

$202.2 million 

(0.46/gal if 10-10)
c 

$212.1 million 

(0.53/gal if 10-10) 

$203.3 million 

(0.50/gal if 10-10) 

$187 million 

(0.34/gal if 10-10) 

 

$0.50
d 

 

$0.58 

 

$0.545 

 

$0.37 

Huang et al. (2009) 

  $0.55/gallon $0.55/gal Jiang & Swinton (2008) 
a 
Updated using EIA (2008). 

b 
Not updated since author did not provide year of estimate. 

c 
10-10 denotes cost is amortized over 10 years at 10%. 

d 
Updated using building materials price index. 

e
 Operating costs excluding feedstock cost, enzyme cost, and co-product credit. 

f
 Operating costs excluding feedstock cost, enzyme cost, co-product credit, depreciation, and minimum 

investment return. 
g 
Updated using machinery price index (NASS, 2007a; 2007b). 

h
 Consistent with a 65% efficiency of theoretical yield. 
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Table B.2.1 – Continued 

Plant life Biochemical 20 years  Kazi et al. (2010b) 

Other costs Partial variable 

costs 
$0.11/gal  

Aden et al. (2002) 

 “Other” costs $0.11/gal  Aden et al. (2002) 

 Total non-

feedstock costs 
$1.48/gal  

Chen et al. (2010) 

 Operating costs
e 

$1.84/gal $1.84 
Kazi et al. (2010b) 

 Adjusted 

operating cost
f $0.92 $0.92 

Kazi et al. (2010b) 

Enzyme cost  $0.07-0.20/gal  Aden et al. (2002) 

  $0.32/gal $0.32/gal Aden (2008) 

 2012 target $0.10/gal  Aden (2008) 

  $0.14-0.18/gal  Bothast (2005) 

  $0.40-$1.00/gal $0.40-1.00/gal Industry Source 

  $0.69/gal $0.69/gal Kazi et al. (2010b) 

  $0.10-0.25/gal  Tiffany et al. (2006) 

Operating costs Stover 

SG (crop) 

SG (grass) 

Hybrid Poplar 

Aspen Wood 

$1.42/gal
g 

$1.73/gal 

$1.86/gal 

$1.83/gal 

$1.56/gal 

$1.58/gal 

$1.92/gal 

$2.06/gal 

$2.03/gal 

$1.73/gal 

Huang et al. (2009) 

  $1.10/gal $1.10/gal Jiang & Swinton (2008) 

Ethanol yield  87.9  Aden et al. (2002) 

(Cellulosic) Stover 

  Current 

  Theoretical 

  2012 target 

 

71.9 

112.7 

90 

 

Aden (2008) 

  80-120  Atchison & Hettenhaus (2003) 

  

Woody 

80-90 

89.5 
 

BRDI (2008) 

  79  Chen et al. (2010) 

  96  Comis (2006) 

  60-140  Crooks (2006) 

 Stover 

Switchgrass 

Hybrid Poplar 

Aspen Wood 

89.8 

82.7 

88.2 

111.4 

 

Huang et al. (2009) 

  54.4  Jiang & Swinton (2008) 

 Stover 

  Current
h 

  Theoretical 

 

69.5 

106.9 
 

Kazi et al. (2010b) 

  87.3  Khanna (2008) 

  79.2  Khanna & Dhungana (2007) 

  60-140  Krissek (2008) 

  72  McAloon et al. (2000) 

  80  Perlack & Turhollow (2002) 

  70  Petrolia (2008) 

  67.8-89.7  Tiffany et al. (2006) 

  70  Tokgoz et al. (2007) 
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Table B.2.1 – Continued 

Plant size Cellulosic 2294-4408 tons/day  Huang et al. (2009) 

 Stover 2206 tons/day  Kazi et al. (2010b) 

Online Days  350 

350 

350 

 

Aden et al. (2002) 

Huang et al. (2009) 

Kazi et al. (2010b) 
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Table B.2.2 – Harvest and maintenance
a 

Type of Feedstock Type of Cost Cost per ton 

(cited) 

Cost per ton 

(2007$) 

Reference 

Corn stover Baling and staging 26 47 Aden (2008) 

 Custom Harvest 

  Bale 

  Rake and Bale 

  Shred, Rake, and  

     Bale 

 

7.5 

8.8 

10.7 

 

7.5 

8.8 

10.7 

Brechbill & Tyner 

(2008a) 

 Harvest 14 14 Edwards (2007) 

 Baling, stacking and 

grinding 

26 45 Hess et al. (2007) 

 Combine, Shred, 

Bale and Stack 

19.2 24.3 Huang et al. (2009) 

 Harvest cost  19.6 36 Jiang & Swinton (2008) 

 Harvest 35.4-36.6 35.4-36.6 Khanna (2008) 

 Harvest and Bale 7.3 7.3 Lambert & Middleton 

(2010) 

 Collection  31-36 66-77 McAloon et al. (2000) 

 Collection  35-46 64-84 McAloon et al. (2000) 

 Collection  17.7 17.7 Perlack (2007, 

Presentation) 

 Up to Storage 20-21 36-39 Sokhansanj & 

Turhollow (2002) 

  28 36 Suzuki (2006) 

Corn stover or 

Switchgrass 

Move to fieldside 
2 2 

Brechbill & Tyner 

(2008a) 

Switchgrass Custom Harvest 

  Bale 

  Rake and Bale 

  Shred, Rake and  

     Bale 

 

2.01 

3.09 

4.79 

 

 

2.01 

3.09 

4.79 

Brechbill & Tyner 

(2008a) 

 Harvest 32 32 Duffy (2007) 

 Harvest (square 

bales) 

21.9 27.8 Huang et al. (2009) 

 Total production 

cost 

54.4 54.4 Jiang & Swinton (2008) 

 Harvest 27.8-34.7 27.8-34.7 Khanna (2008) 

 Harvest, 

maintenance and 

establishment 

123.5/acre 210/acre Khanna & Dhungana 

(2007) 

 Harvest 35 58 Khanna, Dhungana, & 

Clifton-Brown (2008) 

     

 Collection 12-22 16-28 Kumar & Sokhansanj 

(2007) 
a 
Harvest and maintenance costs were updated using USDA NASS Agricultural fuel, machinery and labor prices 

from 1999-2007 (NASS, 2007a; 2007b). 
b
 The Jenkins et al. (2009) value was based on a summary of the literature and does not have a relevant year for 

cost. 
c 
Assume a conversion of 0.59 for green tons to dry tons. 

d
 Price not updated. 
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Table B.2.2 – Continued 

Switchgrass (cont.) Maintenance and 

Fertilization 
  

Mooney et al. (2009) 

   0 lb N/ac 17.23/acre 17.23/acre  

   60 lb N/ac 46.5/acre 46.5/acre  

   120 lb N/ac 72.7/acre 72.7/acre  

   180 lb N/ac 99/acre 99/acre  

 Harvest cost 

(function of yield) 
  

Mooney et al. (2009) 

    7.7 tons/acre 200/acre 200/acre  

    12.5 tons/acre 312/acre 312/acre  

    2.4 tons/acre 79/acre 79/acre  

    7.2 tons/acre 190/acre 190/acre  

 Harvest 15 26 Perrin et al. (2008) 

 Weed Control 9.4/acre 9.4/acre (08$)
 

University of Tennessee 

(2009) 

 Mow, Rake, Bale, 

Equip, Repair, 

Interest, Operating 

Capital 

243/acre 243/acre  

Prairie grasses 

(include SG) 

Harvest  17.7-19.3  Tiffany et al. (2006) 

Miscanthus Harvest 18.7-32.7 18.7-32.7 Khanna (2008) 

 Harvest, 

maintenance, and 

establishment  

301/acre 512/acre Khanna & Dhungana 

(2007) 

 Harvest 33 54 Khanna, Dhungana, & 

Clifton-Brown (2008) 

Straw Harvest and Bale 7.3 7.3 Lambert & Middleton 

(2010) 

Non-specific  10-30 15-45 Mapemba et al. (2007) 

  23 38 Mapemba et al. (2008) 

Hybrid Poplar and 

Aspen Wood 

Logging Cost 

   Range 

   Assumed 

Chipping Cost 

   Range 

   Assumed 

(Minnesota) 

 

14-28 

14.5 

 

12-27 

12.7 

 

 

17.8-34.6 

18.4 

 

15.2-34.3 

16.1 

Huang et al. (2009) 

Woody Biomass Roadside 40-46 40-46 BRDI (2008) 

 Stumpage 4 4 BRDI (2008) 

 Harvest/Collection 17-29/acre 17-29/acre BRDI (2008) 

 Collect and transport 

woody slash 2.8 m 

24.3/Gt 

31.2/dt 

24.3/Gt 

31.2/dt 

Han et al. (2010) 

 Aspen wood 

stumpage 

51.9 66 Huang et al. (2009) 

 Up to roadside 30-50 30-50
b 

Jenkins et al. (2009)
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Table B.2.2 – Continued 

Woody Biomass 

(continued) 

Up to roadside and 

on truck  

25/dt 25/dt
d 

Sohngen et al. (2010) 

 Up to roadside and 

on truck (high) 

34/dt 34/dt (09$) Sohngen et al. (2010) 

 Delivered cost range 34-65 34-65 (09$) Sohngen et al. (2010) 

 Residue delivered    

    West 56/GMT 86/dt
c
 (08$) Spelter & Toth, (2009) 

    North 49/GMT 75/dt
c
 (08$) Spelter & Toth, (2009) 

    South 42/GMT 66/dt
c
 (08$) Spelter & Toth, (2009) 

    Northeast 38/GMT 58/dt
c
 (08$) Spelter & Toth, (2009) 

 Cut and extract to 

roadside 
35-87

d 

 
 

USDA Forest Service 

(2003; 2005) 
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Table B.2.3 – Nutrient and replacement
a 

Type of Feedstock Type of Cost Cost per ton 

(cited) 

Cost per ton 

(2007$) 

Reference 

Corn stover  7 14.4 Aden et al. (2002) 

  6.4-12.2
b 

 Atchison & Hettenhaus 

(2003) 

  15.6 15.6 Brechbill & Tyner 

(2008a) 

  10.2 14.1 Hoskinson et al. (2007) 

  7.3 10 Huang et al. (2009) 

  6.5 13.7 Jiang & Swinton (2008) 

 Replace N, P, K 21.7 21.7 (09$) Karlen (2010) 

 Whole plant harvest 9.7 13.3 Karlen & Birrell 

(Presentation) 

 Cob & top 50% 

harvest 

9.5 13.1 Karlen & Birrell 

(Presentation) 

 Bottom 50% 

harvest 

10.1 13.9 Karlen & Birrell 

(Presentation) 

  4.6 8.4 Khanna & Dhungana 

(2007) 

  10 21 Perlack & Turhollow 

(2003) 

  4.2 4.2 Petrolia (2008) 

Corn stover or 

Straw 

 11.1 

 

15.4 Lambert & Middleton 

(2010) 

Switchgrass  10.8 19.8 Khanna, Dhungana, & 

Clifton-Brown (2008) 

  6.7 12.1 Perrin et al. (2008) 

 Fertilizer, 

Equipment, Labor 

84/acre 84/acre (08$)
 

UT (2008) 

Miscanthus  2.5 4.6 Khanna, Dhungana, & 

Clifton-Brown (2008) 

  4.2 7.7 Cost using average 

fertilizer rates from 

literature summarized in 

Khanna, Dhungana, & 

Clifton-Brown (2008) 

and updated Khanna, 

Dhungana, & Clifton-

Brown (2008) costs  
a
 Nutrient and Replacement costs were updated using USDA NASS Agricultural Fertilizer Prices from 1999-

2007 (NASS, 2007a,b). 
b
 Price not updated. 
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Table B.2.4 – Distance  

Distance 

(miles) 

Type Reference 

10-50 One-way Atchison & Hettenhaus (2003) 

5-50 One-way Brechbill & Tyner (2008b; 2008a) 

75 One-way max BRDI (2008) 

50 One-way max English et al. (2006) 

50 Round-trip Khanna, Dhungana, & Clifton-Brown (2008) 

46-134 Round-trip Mapemba et al. (2007) 

22-61 One-way Perlack & Turhollow (2002) 

16.6-47 One-way average Perlack & Turhollow (2002) 

22-62 One-way Perlack & Turhollow (2003) 

83 One-way (wood) Sohngen et al. (2010) 

46-138 One-way range (wood) Sohngen et al. (2010) 

50 One-way (wood) Spelter & Toth, (2009) 

50 One-way max Taheripour & Tyner (2008) 

50 One-way Tiffany et al. (2006) 

100 One-way (wood) USDA Forest Service (2003; 2005) 

50 One-way Vadas et al. (2008) 
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Table B.2.5 – Transportation cost
a 

Type of 

Feedstock 

Type of Cost Cost cited Cost (2007$) Reference 

Corn stover Per ton 13 31 Aden et al. (2002) 

 10 miles 

15 miles 

30 miles 

40 miles 

50 miles 

3.4 

5.1 

10.2 

13.5 

17
b 

 

Atchison & Hettenhaus 

(2003) 

 Own equipment 

(per ton) 

  10 miles 

  20 miles 

  30 miles 

  40 miles 

  50 miles 

 

 

3.3-6.2 

4.7-7.5 

6-8.9 

7.3-7.7 

8.7-9 

 

 

3.3-6.2
e 

4.7-7.5 

6-8.9 

7.3-7.7 

8.7-9 

Brechbill & Tyner (2008a) 

 Per ton 8.9 12.5 English et al. (2006) 

 Per ton 10.3 27 Hess et al. (2007) 

 DFC 

t 

6.9 

0.16 

9.71 

0.23 

Huang et al. (2009) 

 t
c 

0.15 0.35 Kaylen et al. (2000) 

 Max t for positive 

NPV 
0.28 0.66 

Kaylen et al. (2000) 

 t 

DFC 

0.16 

3.6 

0.38 

8.6 

Kumar et al. (2003) 

 t 

DFC
d 

DFC range 

0.08-0.29 

4.5 

0-6 

0.17-0.63 

9.8 

0-13.3 

Kumar et al. (2005) 

 Per ton 10.8 10.8 Perlack (2007, Presentation) 

 Per ton 4.2-10.5 11-27.7 Perlack & Turhollow (2002) 

 t 

  0-25 miles 

  25-100 miles 

  >100 miles 

DFC square bales 

DFC round bales 

 

0.13-0.23 

0.10-0.19 

0.09-0.16 

1.7 

3.1 

 

0.13-0.23 

0.10-0.19 

0.09-0.16 

1.7 

3.1 

Petrolia (2008) 

 t 

DFC 

0.18 

4 

0.32 

7.3 

Searcy et al. (2007) 

 Per ton 10.9 13.8 Vadas et al. (2008) 
a
 Transportation costs were updated using USDA NASS Agricultural fuel prices from 1999-2007 (NASS, 

2007a; 2007b). 
b
 Prices not updated. 

c
 t is distance variable cost in per ton per mile. 

d
 DFC is distance fixed cost per ton. 

e
 Authors used 2006 wages and March 2008 fuel costs. 
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Table B.2.5 – Continued
 

Corn stover or 

Switchgrass 

Average t 0.20 0.20 Brechbill & Tyner (2008b; 

2008a) 

 Custom loading 

Custom t 

Owned t 

Custom per ton 

  10 miles 

  20 miles 

  30 miles 

  40 miles  

  50 miles 

1.15 

0.28 

0.12 

 

3.9 

6.7 

9.5 

12.2 

15 

1.15 

0.28 

0.12 

 

3.9 

6.7 

9. 

12.2 

15 

Brechbill & Tyner (2008a) 

Switchgrass Own equipment 

(per ton) 

  10 miles 

  20 miles  

  30 miles  

  40 miles 

  50 miles 

 

 

3.1-3.9 

4.5-5.3 

5.8-6.6 

7.2-8 

8.5-9.3 

 

 

3.1-3.9
e 

4.5-5.3 

5.8-6.6 

7.2-8 

8.5-9.3 

Brechbill & Tyner (2008a) 

 Per ton 14.8 14.8 Duffy (2007) 

 DFC 

t 

3.4 

0.16 

4.8 

0.23 

Huang et al. (2009) 

 Per ton 19.2-23 27-32.4 Kumar & Sokhansanj (2007) 

 Per ton 13 28 Perrin et al. (2008) 

 Stage and Load 19/acre 19/acre (08$) UT (2009) 

 Per ton 10.9 13.8 Vadas et al. (2008) 

Native Prairie 

(include SG) 

Per ton 4
b 

 Tiffany et al. (2006) 

Switchgrass or 

Miscanthus 

Per ton for 50 

miles 

7.9 17.1 Khanna, Dhungana, & 

Clifton-Brown (2008) 

Non-specific Per ton 7.4-19.3 13.7-35.6 Mapemba et al. (2007) 

 Per ton 14.5 31.5 Mapemba et al. (2008) 

Hybrid Poplar and 

Aspen Wood 

DFC 

t 

4.13 

0.16 

5.8 

0.23 

Huang et al. (2009) 

Woody Biomass t 0.22 0.22 Sohngen et al. (2010) 

 Per ton 11-22 11-22 Summit Ridge Investments 

(2007) 

 t 0.2-0.6 

Used 0.35
b 

 USDA Forest Service (2003; 

2005) 

Wood t 0.20-0.60 0.20-0.60 Jenkins et al. (2009) 
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Table B.2.6 – Storage cost
a 

Type of Feedstock Type of Cost Cost per ton 

(cited) 

Cost per ton 

(2007$) 

Reference 

Corn stover  4.4 5.6 Hess et al. (2007) 

  4.4-22 4.4-22 Khanna (2008) 

 Round bales 

Square bales 

6.8 

12.9 

6.8 

12.9 

Petrolia (2008) 

Stover or 

Switchgrass 

Square bales 7.3 7.9 Huang et al. (2009) 

Switchgrass  16.7 16.7 Duffy (2007) 

  4.4-21.7 4.4-21.7 Khanna (2008) 

  4.1 5.2 Khanna, Dhungana, & 

Clifton-Brown (2008) 

Miscanthus  4.6-23.5 4.6-23.5 Khanna (2008) 

  4.4 5.5 Khanna, Dhungana, & 

Clifton-Brown (2008) 

Non-specific  2 2.2 Mapemba et al. (2008) 

Hybrid Poplar or 

Aspen Wood 

Keep on stump 

until needed 

0 0 Huang et al. (2009) 

a
 Storage costs were updated using USDA NASS Agricultural building material prices from 1999-2007 (NASS, 

2007a; 2007b).
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Table B.2.7 – Establishment and seeding cost
a 

Type of 

Feedstock 

Type of Cost Land 

rent 

included 

Cost per acre 

(cited) 

Cost per 

acre (2007$) 

Reference 

Switchgrass  Yes 200 200 Duffy (2007) 

 Grassland 

Cropland 

(includes fertilizer) 

No 134 

161 

180 

216 

Huang et al. (2009) 

 Seed and fertilizer 

cost per acre (no 

equip/machinery) 

No 171 171 (08$) James et al. (2010) 

 PV per ton 

10 yr PV per acre  

Amortized  

  4% over 10 years 

  8% over 10 years 

No 7.2/ton 

142.3 

 

17.3 

20.7 

12.6/ton 

249 

 

30.3 

36.3 

Khanna, Dhungana, & 

Clifton-Brown (2008) 

 Plots with seeding:     

    2.5 lb/acre No 150 150 Mooney et al. (2009) 

    5 lb/acre No 202.6 202.6  

    7.5 lb/acre No 255 255  

    10 lb/acre No 306.6 306.6  

    12.5 lb/acre No 359 359  

  No 

Yes 

25.8 

85.5 

46 

153 

Perrin et al. (2008) 

 Prorated 

Establishment and 

Reseeding (10 

years) 

 45.7 45.7 (08$)
 

UT (2009) 

  Yes 72.5-110 88.5-134 Vadas et al. (2008) 

Miscanthus Plugs No 3000-4000/ha 1215-

1619/ac 

Jain et al. (2010) 

 Rhizomes in 

Illinois 

No 2957/ha 1197/ac  

 Total rhizome cost 

per acre  

No 8,194 8,194 (08$) James et al. (2010) 

 Total rhizome cost 

per acre - projected 

No 228 228 (08$)  

 PV per ton  

20 yr PV per acre 

Amortized 

  4% over 20 years 

  8% over 20 years 

No 2.3/ton 

261 

 

19 

26.2 

4/ton 

457 

 

33.2 

45.9 

Khanna, Dhungana, & 

Clifton-Brown (2008) 

 Total 

Amortized 

  4% over 20 years 

  8% over 20 years  

No 1206-2413 

 

88-175 

121-242 

 

 

176-350 

242-484 

Lewandowski et al. 

(2003) 

a
 Establishment and seeding costs were updated using USDA NASS Agricultural fuel and seed prices from 

1999-2007 (NASS, 2007a; 2007b). 
c
 No equipment or labor cost. 
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Table B.2.7 – Continued
 

Prairie grass Total seed cost per 

acre
c 

No 536 536 (08$) James et al. (2010) 

Mixed 

Grasses 

Total seed cost per 

acre
c 

No 297 297 (08$) James et al. (2010) 

Hybrid Poplar Total cutting cost 

per acre  

No 242 242 (08$) James et al. (2010) 

 Includes nutrients 

(cropland) 

No 35 47 Huang et al. (2009) 

Timber Yellow Pine 

(South average) 

 386 386 (08$) Cubbage et al. (2010) 

 Yellow Pine (NC)  430 430 (08$)  

 Douglas Fir 

(NC,OR) 

 520 520 (08$)  
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Table B.2.8 – Opportunity cost
a 

Type of 

Feedstock 

Type of Cost Cost per acre 

(cited) 

Cost per acre 

(2007$) 

Reference 

Corn stover Lost profits when 

switch to CC 

94-140  Scenarios derived using Duffy 

(2010) 

 Feed value less 

harvest and 

nutrient cost  

24/ton 245/ton Edwards (2007) 

   @ 2.4 tons/acre 57/acre 57/acre  

 Lost profits 22-58 22-58 Khanna & Dhungana (2007) 

Switchgrass Cash Rents 70 

(14/ton) 

70 

(14/ton) 

Brechbill & Tyner (2008a) 

 Forgone profits 

per ton 

46-103/mt 42-93/ton Jain et al. (2010) 

 Lost profits 78-231 78-231 Khanna & Dhungana (2007) 

 Cash rental rate – 

alternative land 

use (TN) 

68 68 Mooney et al. (2009) 

Switchgrass or 

Miscanthus 

Forgone profits – 

Michigan 

366/ha 148/ac Jain et al. (2010) 

 Forgone profits – 

Illinois 

785/ha 318/ac  

 Lost profits 78 76 Khanna, Dhungana, & 

Clifton-Brown (2008) 

Miscanthus Forgone profits 

per ton 

19-103/mt 17-93/ton Jain et al. (2010) 

 Lost profits 78-231 78-231 Khanna & Dhungana (2007) 

Non-specific  78 76 Khanna, Dhungana, & 

Clifton-Brown (2008)  

 Lost CRP 

payments if 

harvest every year 

35 36 Mapemba et al. (2008) 

 Lost CRP if 

harvest once every 

3 years 

10.1 10.4  

 Non-CRP land 

crops 

10/ton 10.3/ton  

Woody Biomass Alternative use 0-25 0-25 Summit Ridge Investments 

(2007) 

 Chip value 30/ton 30/ton
b 

USDA Forest Service (2003; 

2005) 
a
 Opportunity costs were updated using USDA NASS Agricultural land rent prices from 1999-2007 (NASS, 

2007a; 2007b). 
b
 Price not updated since no year was provided for initial estimate.
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Table B.2.9 – Yield  

Biomass Type Assumptions Estimated Yield 

(tons acre
-1

) 

Location Reference 

Corn stover  2-3.8 
 

Atchison & Hettenhaus 

(2003) 

 130 bu/acre yield 

170 bu/acre yield 

200 bu/acre yield 

0-2.6 

0-3.6 

0-4.3 

 

 

  3  BRDI (2008) 

 Bale 

Rake and Bale 

Shred, Rake and  

     Bale 

1.62 

2.23 

2.98 

IN Brechbill & Tyner 

(2008a) 

 No-till 0.67 Average Chen et al. (2010) 

 Four scenarios  1.5, 3, 4, and 6 IA Duffy & Nanhou (2002) 

  2.4 IA Edwards (2007) 

 Produced 2.54 MN Huang et al. (2009) 

 Previous study 1.6 Michigan James et al. (2010) 

 Produced (150 

bu/ac) 
2.93 Corn Belt 

Jiang & Swinton (2008) 

 Harvested (50%) 1.46 Corn Belt  

 Produced 

Delivered 

2.4-4 

1.8-1.9 
IL 

Khanna (2008) 

 Soil tolerance 
2.02 IL 

Khanna & Dhungana 

(2007) 

 Total produced 

125 bu/acre   

140 bu/acre 

  >140 bu/acre 

 

3.5 

3.9 

4 

 

Lang (2002) 

  
1.1  

Perlack & Turhollow 

(2002) 

 Collected 0.8-2.2 KY Prewitt et al. (2007) 

 Total produced 

Removable 

4.2 

2.9 
IA 

Quick (2003) 

 Collected (trial) 1.25-1.5 IA, WI Schechinger & 

Hettenhaus (2004) 

 Produced 

Delivered 

3.6 

1.5 
Midwest 

Sokhansanj & 

Turhollow (2002) 

 2000-2005 mean  2.3-3 WI Vadas et al. (2008) 
a
 The first value is derived using a general conversion factor of 0.64 dry metric tons per cubic meter (DMT/m

3
) 

for softwoods. The yields in parentheses are based on conversion factors provided by engineeringtoolbox.com 

of 0.35-0.60 DMT/m
3
 and 0.53 DMT/m

3
 for Yellow Pine and Douglas Fir. (Accessed 9-15-2010) 

http://www.engineeringtoolbox.com/wood-density-d_40.html 
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Table B.2.9 – Continued 

Switchgrass Field trials  

Mean 

Strains: 

  Dacotah 

  ND3743 

  Summer 

  Sunburst 

  Trailblazer 

  Shawnee 

  OK NU-2 

  Cave-in-Rock 

 

1.1-4.1 

 

1.1-4.2 

0.9-3.9 

1.2-4.4 

1.4-5.6 

1.2-4.9 

1.1-4.5 

0.9-4.2 

1-4.3 

ND Berdahl et al. (2005) 

 Kanlow (avg) 

Alamo (avg) 

5.9 

6.0 

AL Bouton (2002) 

  4.2-10.3  BRDI (2008) 

 
 

5 IN Brechbill & Tyner 

(2008a) 

 Alamo (3-4 years) 

Caddo (3-4 years)  

Alamo (3 years) 

Caddo (3 years) 

Alamo (3 years) 

Caddo (3 years) 

4.9-8.8 

2.2-2.7 

4 .8 

0.5 

7.5 

3.3 

TX 

 

LA 

 

AR 

Cassida et al. (2005) 

 Simulated 

(MISCANMOD) 

3.8 US Average Chen et al. (2010) 

  7-16 

5-6 

1-4 

Southeast 

Western Corn Belt 

ND 

Comis (2006) 

 POLYSIS 

assumption 

4.9 Northeast de La Torre Ugarte et al. 

(2003) 

  5.8 Appalachian  

  6 Corn Belt  

  4.8 Lake States  

  5.5 Southeast  

  4.3 Southern Plains  

  3.5 Northern Plains  

  4 IA Duffy (2007) 

 Plot trials 6.3 

4.6-8.5 

SE Fike et al. (2006a) 

 CIR (1 cut) 

Shelter (1 cut) 

Alamo (1 cut) 

Kanlow (1 cut) 

CIR (2 cut) 

Shelter (2 cut) 

Alamo (2 cut) 

Kanlow (2 cut) 

3.9-7.3 

3.7-6.8 

4.8-9.8 

5.4-9.5 

5.8-9.5 

4.9-9.1 

6-10 

6-9.5 

Southeast (6) Fike et al. (2006b) 

  1-4 

2-6.4 

IA Gibson & Barnhart 

(2007) 

 Peer-reviewed 

articles 

4.5  Heaton et al. (2004b) 

 Cropland and 

grassland 

4.9 MN Huang et al. (2009) 
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Table B.2.9 – Continued 

Switchgrass 

(continued) 

Average model 

yield (range) 

6.8 (3.6-17.8) Midwest Jain et al. (2010) 

 Farm-gate yield 

(annualized yield 

after losses) 

3.8-4.2 Midwest  

 Average observed 

peak yield 

6.6 Midwest  

 Assumption 4 Southern 

Michigan 

James et al. (2010) 

 Assumption 

(previous studies) 

3.6 Corn Belt Jiang & Swinton (2008) 

 Delivered  2.3-2.5 IL Khanna (2008) 

 Field Trials 2.6 IA, IL Khanna & Dhungana 

(2007) 

 Delivered yield 

(years 3-10) 

3.1 IL Khanna, Dhungana, & 

Clifton-Brown (2008) 

 Peak Yield 4.2 IL  

 10 year PV 19.7 IL  

 3 years of data 

(avg) 

 

5.5 

7.7 

8.3-10 

LA 

AR 

TX 

Kiniry et al. (2005) 

 7 years of data 

(avg) 

6.6 TX  

 Assumptions 

  Lake states 

  Corn belt 

  Southeast  

  Appalachian 

  North Plains 

  South Plains 

  North East 

 

4.8 

6 

5.5 

5.8 

3.5 

4.3 

4.9 

 

 

 

 

 

 

 

 

Kszos et al. (2002) 

 Plots 4 Iowa Lemus et al. (2002) 

 Research blocks 7.1 (average) 

9.8 (best) 

Southern and Mid-

Atlantic 

Lewandowski et al. 

(2003) 

 Alamo (1 cut) 

 

5.4-5.9 

11.6 

TX, Upper South 

AL 

Lewandowski et al. 

(2003) 

 Alamo (2 cut) 15.4 AL  

 Kanlow (1 cut) 4.5-5.5 

8.3 

TX, Upper South 

AL 

 

 Kanlow (2 cut) 10.3 AL  

 Kanlow (3-4 years) 5 Britain  

 Cave-in-Rock (1 

cut) 

2.4-4.2 

4.2 

TX, Upper South 

AL 

 

 Cave-in-Rock (2 

cut) 

4.6 AL  

 Cave-in-Rock (3-6 

years) 

4.7 Britain  
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Table B.2.9 – Continued 

Switchgrass 

(continued) 

Calibrated values 

for 2008 (assumed 

2% growth 

following 2008) 

3.5-6.5 

5.2-6.4 

3.8-6.5 

4.5-6.0 

3 

4.8-6.0 

3.2-6.2 

3.5-6.3 

4.4-6.5 

Appalachian 

Corn Belt 

Delta States 

Lake States 

Mountain States 

Northern Plains 

Northeast 

Southern Plains 

Southeast 

Marshall & Sugg (2010) 

 US average 4.2 
 

McLaughlin et al. 

(2002) 

 Farm trials (avg) 

  Alamo (1 cut) 

 

6.2 

VA, TN, WV, 

KY, NC 

McLaughlin & Kszos 

(2005) 

   Alamo (1 cut) 6-8.5 TX, AR, LA  

   Alamo (1 cut) 5.4 IA  

   Alamo (1 cut) 5.8-7.2 AL, GA  

   Alamo (2 cut ) 7 VA, TN, WV, 

KY, NC 

 

   Alamo (2 cut) 7.2-10.3 AL  

   Kanlow (1 cut) 6.2 VA, TN, WV, 

KY, NC 

 

   Kanlow (1 cut) 5.8 IA  

   Kanlow (1 cut) 5.2-7 AL, GA  

   Kanlow (1 cut) 9.2 NE  

   Kanlow (2 cut) 6.9-8.1 AL  

   Cave-in-rock (1 

cut) 

7.3 NE  

   Rockwell (1 cut) 4.2 KS  

   Shelter (1 cut) 4.2 KS  

   Sunburst (1 cut) 4.9 ND  

   Trailblazer (1 cut) 4.4 ND  

 Best 

  Alamo (1 cut) 

12.2 VA, TN, WV, 

KY, NC 

 

   Alamo (1 cut ) 11 TX, AR, LA  

   Alamo (1 cut) 7.8 IA  

   Alamo (1 cut) 15.4 AL  

   Alamo (2 cut) 11.3 VA, TN, WV, 

KY, NC 

 

   Alamo (2 cut) 15.4 AL  

   Kanlow (1 cut) 10.4 VA, TN, WV, 

KY, NC 

 

   Kanlow (1 cut) 11 AL, GA  

   Sunburst (1 cut) 6.2 ND  

   Trailblazer (1 cut) 5.4 ND  

 3 experiments on 

loss 

3.8-6.7 Italy Monti et al. (2009) 

 Sustainable yield 

(124 kg N/acre) 

6.7 U.S.  

 Plots – varying seed 

and nitrogen 

3.8-7.9 TN Mooney et al. (2009) 

 One year max – plot 10.2 TN  

 Max (Alamo) 

Average (2 sites) 

10 

4.8-6.5 

TX Muir et al. (2001) 
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Table B.2.9 – Continued 

Switchgrass 

(continued) 

Predicted yields 

  0-200 lbs/acre N 

  100 lbs/acre N 

 

2.5-5.9 

4.6 

KS Nelson et al. (2006) 

 Alamo (1 cut) 

Alamo (2 cut) 

1.2-9 

1.3-8.6 

Texas Ocumpaugh et al. 

(2003) 

 Upland (1 cut) 

Upland (2 cut) 

Lowland (1 cut) 

Lowland (2 cut) 

4.8-5.3 

6.5-6.7 

6.6-7 

6.8-7.3 

 

Parrish et al. (2003) 

 Farm-scale  2.2 (5 year avg) 

(Range = 1.7-2.7) 

3.1 (10 year avg) 

(Range = 2.6-3.5) 

SD, NE Perrin et al. (2008) 

 First 

Second year 

Third+ year 

0 

3 

5 

AR Popp & Hogan (2007) 

 Cave-in-Rock 

3 year avg 

2.2 

5.2 

2.7 

Northern Illinois 

Central Illinois 

Southern Illinois 

Pyter et al. (2007) 

 Previous Literature 4.5-6.7  Reijnders (2010) 

 One-cut range 

Two-cut range 

Cave-in-rock (2 cut) 

Alamo (2 cut) 

Kanlow (2 cut)  

Shelter (2 cut) 

5-9 

6.8-10.3 

8.7 

8.9 

8.2 

8.1 

TN Reynolds et al. (2000) 

 Cave-in-Rock (2 

cut) 

2.8 PA Sanderson (2008) 

 Shawnee (2 cut)  2.7   

 Trailblazer (2 cut) 2.6   

 Mean (2 cut) 2.7   

 Cave-in-Rock (3 

cut) 

3.2 
 

 

 Shawnee (3 cut) 3.2   

 Trailblazer (3 cut)  3.2   

 Mean (3 cut) 3.2   

 Field Trials 

   Mean 

   Range 

 

0.5-3.2 

0-6.4 

Northern Great 

Plains 

Schmer et al. (2006) 

  

Plot trials 

3.6-8.9 (previous) 

2.3-4 (own) 

US 

Northern 

Shinners et al. (2006) 

 80% of Miscanthus 

2004 

6.7 

7.1 

5.4 

9 

5.8 

Poland 

Hungary 

United Kingdom 

Italy 

Lithuania 

Smeets et al. (2009) 

 2030 (1.5% 

increase/year) 

9.4 

9.8 

7.6 

12 

8 

Poland 

Hungary 

United Kingdom 

Italy 

Lithuania 
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Table B.2.9 – Continued 

Switchgrass 

(continued) 

Alamo 

 

 

 

Kanlow 

1.6 

2.8 

2.8 

2.8 

1.4 

2.9 

2.5 

2.8 

KS 

AR 

VA 

OK 

KS 

AR 

VA 

OK 

Taliaferro (2002) 

 One cut 

Two Cut 

Three Cut  

Max Yield (2 

harvest) 

5.8 

5.6 

7.3 

16.4 

OK Thomason et al. (2005) 

  4 Northern Plains Tiffany et al. (2006) 

 Nitrogen level 4-5.8 Upper Midwest Vadas et al. (2008) 

 Plot trials  

 

5.2-5.6 

4.7-5 

IA 

NE 

Vogel et al. (2002) 

 Alamo  

Kanlow 

Max one year 

5.4-6.9 

5.2-6.9 

15.4 

18 sites 

18 sites 

AL 

Walsh (2008) 

 

Grasses County-scale  

  Perennial ryegrass 

 

3.4-4.1 

Pacific NW Banowetz et al. (2008) 

   Tall fescue 4.1-6.2   

   Creeping red 

fescue 

2.2-3.4 
 

 

Mixed grasses Assumption 3.5  James et al. (2010) 

Prairie grasses Assumption 2.14  James et al. (2010) 

Wheat straw  1  BRDI (2008) 

 Estimated 0.27 Average Chen et al. (2010) 

Miscanthus Simulated 

(MISCANMOD) 

11.6 U.S. average Chen et al. (2010) 

 Field experiment 5.7 (14 year) 

3.4-11.7 (3 year) 

EU Christian et al. (2008) 

 First year avg 

First year max 

Second year avg 

Second year max 

Third year avg 

Third year max 

0.85 

1.3 

2.8 

4.3 

7.3 

11.4 

Germany Clifton-Brown & 

Lewandowski (2002) 

 First year avg 

First year max 

First year min 

Second year avg 

Second year max 

Third year max 

0.9 

2.6 

0.2 

3.8 

12 

18.2 

EU Clifton-Brown et al. 

(2001) 

 Peak  

Delayed 

7.5-17.2 

4.3-11.6 

EU Clifton-Brown et al. 

(2004) 

 Projection  13.4 (mean) 

10.9-17.8 
 

Heaton et al. (2004a) 

 Peer-reviewed 

articles  

10 US/EU Heaton et al. (2004b) 
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Table B.2.9 – Continued 

Miscanthus 

(continued) 

3 year state avg 13.2 Illinois Heaton et al. (2008) 

 3 year max state 

avg 

17 Illinois  

 Average model 

yield (range) 

19 (0-27.7) Midwest Jain et al. (2010) 

 Farm-gate yield 

(annualized yield 

after losses) 

6.3-8.6 Midwest  

 Average observed 

peak yield 

16.6 Midwest  

 Assumption 10 Michigan James et al. (2010) 

 Assumption 9.8 Southern 

Michigan 

James et al. (2010) 

 Above ground 

Mean harvested 

6.6-14.9 

5.2 

Germany Kahle et al. (2001) 

 Potential 

Delivered 

12-18 

8.1-8.5 

IL Khanna (2008) 

 Simulated 8.9 IL Khanna & Dhungana 

(2007) 

  14.5 avg 

12-17 range 

114.6 (20 year PV) 

IL Khanna, Dhungana, & 

Clifton-Brown (2008) 

 Autumn yields w/o 

irrigation 

4.5-11.2 EU Lewandowski et al. 

(2000) 

 Yield range (high 

end irrigated) 

0.9-19.6 EU  

  1.8-19.6 EU Lewandowski et al. 

(2003) 

 3 year average 9.8 Northern Illinois Pyter et al. (2007) 

  15.5 Central Illinois  

  15.8 Southern Illinois  

 1 year 14.1 Urbana, Illinois  

 Previous Literature 4.5-5.8  Reijnders (2010) 

 Modeled 

harvestable yield 

6.2-9.4 EU Stampfl et al. (2007) 

 1996 (drought) 

1997 

3.4 

5.9 

Denmark Vargas et al. (2002) 

Hybrid Poplar  

Assumption 

3.5-5.3 

3.4-4 

4 

 

Lake States 

MN 

Huang et al. (2009) 

 POLYSIS 

assumptions 

4 NE de La Torre Ugarte et al. 

(2003) 

  3.6 Appalachian  

  4.6 Corn Belt  

  4.4 Lake States  

  4.5 Southeast  

  3.8 Southern Plains  

  3.8 Northern Plains  

  5.7 Pacific Northwest  
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Table B.2.9 – Continued 

Poplar Assumption 5 Southern 

Michigan 

James et al. (2010) 

 10 year avg (best 

growing taxa) 

3.7 Upper Michigan Miller & Bender (2008) 

Willow POLYSIS 

Assumption 

4.9 Northeast de La Torre Ugarte et al. 

(2003) 

  4.5 Appalachian  

  4. Corn Belt  

  4. Lake States  

 10 year average 

(best taxa) 

3.4 Upper Michigan Miller & Bender (2008) 

Aspen wood  0.45 (dry) MN Huang et al. (2009) 

SRWC  5-12  BRDI (2008) 

Woody 

biomass 

Stock 
4.6-39  

USDA Forest Service 

(2003; 2005) 

Wood residue 2006 average 

removal rate in 

Mississippi (lower 

bound) 

1.1 Mississippi 

USDA Forest Service 

Data 

Yellow Pine 15 m
3
/hectare/yr 4.3 (2.3 – 4)

a 
Southern U.S. Cubbage et al. (2010) 

 12.5 m
3
/hectare/yr 3.6 (2 – 3.3) North Carolina  

Douglas Fir 14 m
3
/hectare/yr 4 (3.3) Oregon Cubbage et al. (2010) 

 18 m
3
/hectare/yr 5.1 (4.25) North Carolina  

Sorghum Previous Literature 16.4  Reijnders (2010) 
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Table B.2.10 – Interest rate 

Details Rate Reference 

 8% Brechbill & Tyner (2008b; 2008a) 

Brechbill, Tyner, & Ileleji (2008) 

Real discount rate (PV calc) 6.5% de La Torre Ugarte et al. (2003) 

Establishment and seeding  8% Duffy & Nanhou (2002) 

Operating expenses  9% Duffy & Nanhou (2002) 

Establishment and seeding  4% Jain et al. (2010) 

Farmer’s real opportunity cost of 

machinery 

5% James et al. (2010) 

Nominal interest rate 8% Mooney et al. (2009) 

Real discount rate 5.4% Mooney et al. (2009) 

Real Discount rate 4% Popp & Hogan (2007) 

 7.5% Quick (2003) 

 7.5% Sokhansanj & Turhollow (2002) 
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Table B.2.11 – Stand length 

Crop Length Reference 

Switchgrass 10 Years Brechbill, Tyner, & Ileleji (2008) 

 10 years de La Torre Ugarte et al. (2003) 

 10 Years Duffy & Nanhou (2002) 

 10+ years Fike et al. (2006b) 

 10 years Jain et al. (2010) 

 10 years James et al. (2010) 

 10 years Khanna (2008) 

 10 years Khanna & Dhungana (2007) 

 10 years Khanna, Dhungana, & Clifton-Brown (2008) 

 10+ years Lewandowski et al. (2003) 

 10 years Miller & Bender (2008) 

 10 years Mooney et al. (2009) 

 5 years
a 

 

 12 Years Popp & Hogan (2007) 

 20 Years Tiffany et al. (2006) 

Miscanthus 20-25 years Lewandowski et al. (2003) 

 20 years Khanna (2008) 

 20 years Khanna & Dhungana (2007) 

 20 years Khanna, Dhungana, & Clifton-Brown (2008) 

 15 years Jain et al. (2010) 

 10 years (sensitivity)  

 10 years James et al. (2010) 

Poplar 6-10 year de La Torre Ugarte et al. (2003) 

 10 years James et al. (2010) 

 10 year analysis Miller & Bender (2008) 

Willow 22 year de La Torre Ugarte et al. (2003) 

 10 year analysis Miller & Bender (2008) 

Yellow Pine (South US) 30 Cubbage et al. (2010)  

Yellow Pine (NC) 23  

Douglas Fir 45 Cubbage et al. (2010) 
a
 Based on the assumption that it will be optimal to replace with improved seed and contracts.
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Table B.2.12 – Yield maturity rate 

Type of Feedstock Year 1 Year 2 Year 3 Reference 

Switchgrass 30% 67% 100% de La Torre Ugarte et al. (2003) 

 30-100 67-100 100% Jain et al. (2010) 

 Max at 3 years   James et al. (2010) 

 30% 67% 100% Kszos et al. (2002) 

 ~33% ~66% 100% McLaughlin & Kszos (2005) 

 
14% of 3

rd
 year 

59% of 

3
rd

 year 
 

Mooney et al. (2009) 

 0 60% 100% Popp & Hogan (2007) 

 20-35% 

(No harvest) 

60-75% 100% Walsh (2008) 

Miscanthus Max at 4 years -- -- Atkinson (2009) 

 2 years in warm climate 

3 years in cooler climates 

-- -- Clifton-Brown et al. (2001) 

 2-5 years for full -- -- Heaton et al. (2004a) 

 0 40-50 100 Jain et al. (2010) 

 Max at 3 years -- -- James et al. (2010) 

Willow 60% in year 4, 100% after -- -- de La Torre Ugarte et al. (2003) 

Timber 5 year establishment period -- -- Cubbage et al. (2010) 
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Appendix B.3 – Summary of biomass cost estimates and assumptions 

Table B.3.1 – Summary of biomass cost estimates and assumptions 

Feedstock Details $ per ton 

(not updated) 

Source 

Alfalfa Breakeven price 54-57 Hallam et al. (2001) 

 Weighted average of leaf meal 

and stems 

84 Vadas et al. (2008) 

Alfalfa hay 3 price scenarios 80, 110, 140 Vadas et al. (2008) 

Biomass Literature summary 20-100 Busby et al. (2007) 

 Maximum  49-61 de la Torre Ugarte et al. (2009) 

 Delivered cost (02$) 34 Hess et al. (2007) 

 Feedvalue of AFEX-treated 

biomass (07$) 

89 

(71-102.5) 

Lambert & Middleton (2010) 

 Marginal value to plant 19 Lambert & Middleton (2010) 

 1,000-4,000 tons/day 44-58 Mapemba et al. (2007) 

 Delivered cost 47 Mapemba et al. (2008) 

 Feedstock production cost 65 Solomon et al. (2007) 

 Supply curve range 13-50 Western Governors’ Association 

(2008) 

Corn Cobs Range for analysis  

($20 intervals) 

40-120 Erickson & Tyner (2010) 

Energy crops Literature summary 25 - >115 Jenkins et al. (2009) 

Grass Mix Price assumption from literature 54 James et al. (2010) 

Hay (Non-alfalfa) 06-09 Michigan average 100 James et al. (2010) 

Hybrid Poplar Production and transport 52 Gan & Smith (2006) 

 Delivered Cost; cropland 85 Huang et al. (2009) 

Miscanthus Low cost scenario; farm-gate 48-139 Jain et al. (2010) 

 High cost scenario; farm-gate 77-212 Jain et al. (2010) 

 Price assumption from literature 54 James et al. (2010) 

 Breakeven price to replace CC 

(current) 

180 (161-198) James et al. (2010) 

 Breakeven price to replace CC 

(future) 

42 (24-60) James et al. (2010) 

 Breakeven (low-high) 84-111 Khanna (2008) 

 Breakeven 53.5 Khanna, Dhungana, & Clifton-

Brown (2008) 

 Breakeven  53.5 Khanna & Dhungana (2007) 

 Farm Gate 60-80 Tyner et al. (2010) 

Mixed Grasses Breakeven price to replace CC 120 

(40-200) 

James et al. (2010) 

Native Prairie Breakeven price to replace CC 522 

(189-854) 

James et al. (2010) 

Perennials Competitive price  40 de La Torre Ugarte et al. (2003) and 

McLaughlin et al. (2002) 
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Table B.3.1 – Continued 

Poplar Assumption  33-44 de La Torre Ugarte et al. (2003) 

 Breakeven price to replace CC 98 

(60-135) 
James et al. (2010) 

 Price assumption from literature 54 James et al. (2010) 

Prairie Mix Price assumption from literature 54 James et al. (2010) 

Reed Canarygrass Farmgate cost; cropland 50-80 Brummer et al. (2002) 

 Farmgate cost; grassland 46-72 Brummer et al. (2002) 

 Breakeven price 41-67 Hallam et al. (2001) 

Residue Value as livestock feed (97$) 14-30 Gallagher et al. (2003a; 2003b) 

Sorghum Observed commody price (07$) 145 Chen et al. (2010) 

 Modeled price (2007$) 131 Chen et al. (2010) 

 Value as livestock feed (97$) 43 Gallagher et al. (2003a; 2003b) 

 Breakeven price; forage 30-38 Hallam et al. (2001) 

 Production cost (Florida); silage 50-90 Hewitt (2006) 

 Mean assumption; silage 64 Rahmani & Hodges (2006) 

Stover 07$ cost assumption 46 Aden (2008) 

 02$ cost assumption 30 Aden et al. (2002) 

 Produce, store and transport 30 

miles 

39-46 Brechbill & Tyner (2008a) 

 Average production and 

transport by farm size and 

equipment 

36-49 Brechbill & Tyner (2008b) 

 Assumption (07$) 30 Carolan et al. (2007) 

 Average cost to deliver (06$) 89 U.S. EPA (2009) 

 Value as livestock feed (97$) 42 Gallagher et al. (2003a; 2003b) 

   35 Glassner et al (1998) 

 Farmer payments 9.3-38/acre Glassner et al (1998) 

 Fieldedge (02$) 30 Graham et al. (2007) 

 Fieldside cost (02$) 25-40 Graham et al. (2007) 

 Delivered cost  51 Huang et al. (2009) 

 Stored and delivered  

Baseline 

Sensitivity range 

 

75 

50-100 

Kazi et al. (2010b) 

 Breakeven (low-high) 83-101 Khanna (2008) 

 77-01 mean crop price 29 Larson et al. (2005) 

 Assumption 35 McAllon et al. (2000) 

 Collect, store, haul 44-49 Perlack & Turhollow (2002) 

 Collect, store, haul 

(conventional baling) 

43-53 Perlack & Turhollow (2003) 

 Marginal feedstock cost 

(refinery) 

54-84 Petrolia (2008) 

 Mean marginal feedstocks cost  52 Petrolia (2008) 
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Table B.3.1 – Continued 

Stover (continued) First plant to last 10 plants 42-60 Sheehan et al. (2004) 

 Delivered cost (bales - chopped) 66-76 Sokhansanj et al. (2010) 

 Farm Gate 50-70 Tyner et al. (2010) 

 Assumed delivered prices 20, 30, 40 Vadas et al. (2008) 

   40 Wallace et al. (2005) 

Straw Competing use value 45-50 Banowetz et al. (2008) 

 Delivered value in Idaho dairy 

market (max) 

32-42 

(max: 60) 
Grant et al. (2006) 

 Delivered value (04$) 32-42 Hess et al. (2007) 

 Price to grower (quality and 

supply) 

28-60 Hess et al. (2007) 

 Supplied to biorefinery 40 Leistritz et al. (2006) 

Switchgrass Breakeven revenue 82-110 Babcock et al. (2007) 

 Processor willingness 38 Babcock et al. (2007) 

 Long-run results under varying 

scenarios 

141-165 Baker et al. (2008) 

 Production cost - ND 47-76 Bangsund et al. (2008) 

 
Produce, store and transport 30 

miles 

57-63 Brechbill & Tyner (2008a) 

 

Average production and 

transport by farm size and 

equipment 

58-71 Brechbill & Tyner (2008b) 

 
Cropland; range (no storage to 

collective storage) 

76-101 Brummer et al. (2002) 

 
Grassland; range (no storage to 

collective storage) 

69-95 Brummer et al. (2002) 

 Assumption (07$) 30 Carolan et al. (2007) 

 Production cost - Missouri 86 Carpenter & Brees (2008) 

 Virginia 46-53.5 Cundiff & Harris (1995) 

 Assumption  30-40 de La Torre Ugarte et al. (2003) 

 Production cost - IA 114 Duffy (2007) 

 Range based on assumptions 54-149 Duffy & Nanhou (2002) 

 Iowa scenarios 54-149 Duffy & Nanhou (2002) 

 
Delivered cost (9 month season) 

Delivered cost (2 month season) 

52.3 

64.3 

Epplin & Haque (2011) 

 Farmgate cost - TN 36-52 Epplin et al. (2007) 

 Delivered cost - TN 49-64 Epplin et al. (2007) 

 Literature review 27 Fox et al. (1999) 
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Table B.3.1 – Continued 

Switchgrass 

(continued) 

Average SG production cost (10 

years) 

24.5-33 Fox et al. (1999) 

 
Avareage SG production cost 

(20 years) 

23-31 Fox et al. (1999) 

 Price use hardwood fiber value 66-82.5 Fox et al. (1999) 

 Production cost (Canada) 34.5-46 Girouard et al. (1999) 

 North Central region 47-51 Graham et al. (1995) 

 
Production cost - NC (w/o 

establishment) 

61 Green & Benson (2008) 

 Breakeven price 28-34 Hallam et al. (2001) 

 Cropland; Delivered cost 81 Huang et al. (2009) 

 Grassland; delivered cost 70 Huang et al. (2009) 

 Low cost scenario; farm-gate 80-131 Jain et al. (2010) 

 High cost scenario; farm-gate 107-170.5 Jain et al. (2010) 

 
Breakeven price to replace CC 104 

(41-167) 

James et al. (2010) 

 Price assumption from literature 54 James et al. (2010) 

 Supplier breakeven range 82.5-486 Jiang & Swinton (2008) 

 Processor breakeven range 17-57 Jiang & Swinton (2008) 

 Breakeven (low-high) 230-252 Khanna (2008) 

 Breakeven 89 Khanna & Dhungana (2007) 

 
Farmgate breakeven 

(annualized) 

89 Khanna, Dhungana, & Clifton-

Brown (2008) 

 Farmgate price assumpton 35 Kszos et al. (2002) 

 
Delivered (does NOT include 

farming cost or extra payment) 

33.5-43.5 Kumar & Sokhansanj (2007) 

 77-01 mean crop price 30 Larson et al. (2005) 

 Farmgate price - delivered 40 McLaughlin & Kszos (2005) 

 Delivered price 49 McLaughlin & Kszos (2005) 

 Assumptions for POLYSIS 27-47 McLaughlin et al. (2002) 

 Assumptions (2013 & 2025) 30-60 McLaughlin et al. (2006) 

 Tennessee - 04$ 53 Mooney et al. (2009) 

 Literature review 36-116 Mooney et al. (2009) 

 Price to supply 70 MGY plant 100 Mooney et al. (2009) 

 
Price needed to jump-start 

supply 

60 Mooney et al. (2009) 

 Scenarios 30, 35, 50 Morrow et al. (2006) 

 
Fieldside breakeven cost; 

Kansas 

23-37 Nelson et al. (2006) 
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Table B.3.1 – Continued 

Switchgrass 

(continued) 

Production cost - ND, SD, NE, 

OK 

42-71 Perrin et al. (2008) 

 
Average production cost (5 

years, 10 sites) 

60 Perrin et al. (2008) 

 
Production cost including 

transport and storage loss 

53-61 Popp & Hogan (2007) 

 NPV 136/acre Song et al. (2011) 

 Farm gate 65-85 Tyner et al. (2010) 

 3 assumed delivered prices 30, 60, 90 Vadas et al. (2008) 

 Midwest 30-70 Wright et al. (2000) - cited in Jenkins 

et al. (2009) 

Switchgrass & 

Big bluestem 

Iowa (93$) 55 Hallam et al. (2001)  

Wheat Observed commodity price 

(07$) 

197 Chen et al. (2010) 

 Model (07$) 217 Chen et al. (2010) 

 Different scenarios and year 5.9-7.6/bu de la Torre Ugarte et al. (2009)  

 Baseline to long-run solution 3.8-4.6/bu Elobeid et al. (2006) 

 Value as livestock feed (97$) 21 Gallagher et al. (2003a; 2003b) 

 97-07 County-level average 4.20/bu Huang & Khanna (2010) 

 97-07 County-level range 1.80-8.60/bu Huang & Khanna (2010) 

Wheat Straw Delivered to 20 MGY plant 32-53.5 Kerstetter & Lyons (2001) 

 77-01 mean crop price 27 Larson et al. (2005) 

Willow Assumption  32-42 de La Torre Ugarte et al. (2003) 

Wood Waste 10-20 BRDI (2008) 

 Harwood; Assumed price at mill 72.5-91 Fox et al. (1999) 

 Delivered cost (Aspen) 83 Huang et al. (2009) 

 Forest thinning and stand 

improvement 

30-50 Jenkins et al. (2009) 

 Assumption 31 Perez-Verdin et al. (2009) 

 Delivered cost 34-65 Sohngen et al. (2010) 

 Short-run woody crops 50-60 Tyner et al. (2010) 

 Forest residues 45 Tyner et al. (2010) 

 
Gross cost range (forest 

biomass) 

36 to 

>1000/acre 

USDA Forest Service (2003; 2005) 

 Raw materials cost 42 Wyman (1999) 
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Appendix B.4 – Graphical depiction of the costs and revenues from a cellulosic biofuel 

blend mandate  

 

The biofuel mandate results in a direct increase in cost to consumers equal to (           ). 

This cost is represented by the difference in areas            and            as 

depicted in Figure B.4.1. This cost is equivalent to the total (net) gain in revenues to all fuel 

producers. Cellulosic biofuel producers experience an increase in revenues of    
    

  equal to the 

area       
       

  in Figure B.4.2 while conventional fuel producers have revenue losses equal 

to          
   

  depicted by sum of areas   
          and   

          in 

Figure B.4.3.  

Figure B.4.1 - Additional cost to fuel consumers from cellulosic biofuel blend mandate (α) 

(Box 1 minus Box 2) 
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Figure B.4.2 – Additional revenue to biofuel producers from cellulosic biofuel blend mandate 

(α) 

 

Figure B.4.3 – Lost revenue to conventional fuel producers from cellulosic biofuel blend 

mandate (α) 

(Box 4 plus Box 5) 
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 4 

Appendix C.1 – Conditions for a convex objective function 

This section derives conditions for convexity of the biorefinery objective function. The 

biorefinery objective function (equation 7 in the main text) is written as follows:  
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First-order necessary conditions for an interior solution include: 
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The second-order sufficient conditions for strict local minima (i.e., strict convexity) require the 

Hessian matrix to be positive definite. To test for positive definiteness, we derive the leading 

principle minors of the Hessian matrix, denoted as H. The necessary-and-sufficient conditions for 

positive definiteness require strictly positive leading principle minors or  

(1).        and   

(2).           
    

where Hij denotes element (i, j) of Hessian matrix. The corresponding elements of the Hessian matrix 

for the biorefinery objective function are     
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The first condition for convexity requires      , which leads to the following relationship:  
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The direction of the inequality is reversed in the last equation since both sides are raised to a negative 

power (that is, 
 

     
  ).  

 The second condition for convexity requires            
   . With some algebra and the 

equations above, this requirement can be written as follows:  
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Rearranging, the second (sufficient and necessary) condition for the biorefinery objective function to 

be strictly convex requires:  
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This inequality will hold for:   
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Therefore, the sufficient-and-necessary conditions for strict local minima to the biorefinery objective 

function require the following:  
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Given the parameter assumptions used in the application to switchgrass-based ethanol production, 

these conditions hold for all potential biorefinery locations.  
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Appendix C.2 – Derivation of cost-minimizing capacity and price of feedstock function 

This section derives the first-order condition for the biorefinery optimization problem presented 

in the main text (equation 8). Recall, the biorefinery objective function:  
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First-order necessary conditions for an interior solution to the biorefinery object function include: 

  
  

  
 

     

  
   (   )      

 

  

   

√       (  )

 

 
   

 

        FOC (1) 

  
  

   
 

 

  
[  

   

 
√

  

     
  

  (  
 )

   
  (  

 ) 
 

 ]        FOC (2)

  

Rearranging FOC (1) to solve for Q and FOC (2) to solve for  (  
 ), the two first-order conditions 

can be rewritten as:  
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Substituting FOC (2)’ into FOC (1)’ yields the following  
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Solving for Q
*
 results in the following equation for minimum efficient capacity and cost-minimizing 

price of feedstock, or equation 8 in the Chapter 4:  
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Appendix C.3 – Biorefinery objective function with fixed density and price of biomass 

The biorefinery objective function with a fixed density (dfixed) and price of biomass (PF,fixed) can be 

written as: 
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 [               √
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The first-order condition for an interior solution can be written as: 

  

  
 

     

  
   

(   )      
 

  

   

√            

 

 
   

 
     

Solving for the minimum efficient capacity (Q
*
) results in  

        
  [

        (   ) √  
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with corresponding capture radius equal to 

        
    √

        
  

            
        

The solution to the biorefinery’s objective function is a minimum efficient capacity that is 

independent of the fixed price of biomass (PF,fixed). The resulting capture radius is also independent of 

PF,fixed. Yet, the cost-minimizing biorefinery capacity and capture radius depend on the assumed 

density value with capacity increasing and radius decreasing in dfixed. Table C.3.1 contains a summary 

of the marginal impact of select model parameters on optimal biorefinery capacity and capture radius 

with a fixed price and density of biomass. 
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Table C.3.1 – Marginal impacts with fixed density and feedstock price 

         
          

  Intuition 

PF,fixed None None -- 

k 

 

Decreasing Decreasing The degree of economies of scale is inversely related to the 

economies of scale factor (k). The minimum efficient capacity 

decreases as the economies of scale decrease holding the 

diseconomies of transportation constant. 

     
 Increasing Increasing The benefits from economies of scale increase as the per gallon 

baseline costs that exhibit economies of scale increase.  

t Decreasing Decreasing The minimum efficient capacity decreases as the diseconomies 

of biomass transportation increase holding economies of scale in 

biorefinery production constant.  

Yb Increasing Decreasing All else constant, the capture radius to meet a given feedstock 

demand decreases as yield increases. The transportation cost 

decreases, resulting in an increase in minimum efficient 

capacity. 

dfixed  Increasing Decreasing The capture radius to meet a given feedstock demand decreases 

as density increases, holding all else equal. The transportation 

cost decreases, resulting in an increase in minimum efficient 

capacity. 
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Figure C.4.1 – Switchgrass production cost for each CRD in the rain-fed region with at least 20 offers 
(Source: Khanna et al., 2011 adjusted for yield assumptions) 
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Figure C.4.2 – Switchgrass yield for each CRD in the rain-fed region with at least 20 offers 
(Source: 75% of value reported by Khanna et al., 2011) 
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Figure C.4.3 – Biorefinery minimum efficient capacity by CRD 
(Numbers identify the 10 biorefinery locations with lowest per gallon cost where 1 represents the least cost location)  
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Figure C.4.4 – Breakeven biofuel production with long run price of oil  

  
Figure C.4.5 – Estimated aggregate ethanol supply curve with and without acreage constraint 
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Figure C.4.6 – Biorefinery characteristics along the aggregate supply curve 

(a). Biomass yield (YB)    (b). Switchgrass production cost (PSG) 
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Table C.4.1 – Average difference in cost-minimizing decisions between alternative assumptions 

and baseline results
a 

(All 182 CRDs) 

 Aggregate  

Capacity 

Average difference from baseline (182 CRDs)
a
 

 
QT – QT,base        

    

  
   

 (bgy) (mgy) (miles)  ($/dt) ($/gallon) 

Low YB (60% Khanna et al.) -1.5 -8 1 -3% 4.1 0.29 

  (-20,-2) (0,3) (-27,0) (0,12) (0.2,0.5) 

High YB (100% Khanna et al.) 2 11 -2 2% -4 -0.30 

  (0,25) (-5,0) (-7,19) (-13,-1) (-0.5,-0.2) 

Low dA (60% willing to consider) -2.9 -16 2 1% 0 0.10 

  (-36,-3) (0,5) (-16,15) (-3,2) (0.1,0.2) 

High dA 2.6 14 -4 -2% 0 -0.09 

  (0,41) (-12,0) (-27,14) (-6,2) (-0.2,0) 

Low t  (t = 0.50) 4.1 22 6 -1% 0 -0.12 

  (-2,70) (0,12) (-7,14) (-1,2) (-0.2,-0.1) 

High t  (t = 1.00) -3.3 -18 -7 1% 0 0.13 

  (-45,0) (-11,0) (-16,16) (-3,3) (0.1,0.2) 

Low k  (k = 0.60) 4.5 25 6 4% 1 0.01 

  (0,58) (0,16) (-1,21) (0,5) (-0.1,0.3) 

High k (k = 0.90) -7.5 -41 -18 -12% -2 -0.10 

  (-89,-5) (-32,-6) (-58,14) (-12,2) (-0.3,0) 

Fast Pyrolysis 2.0 11 3 0% 0 -0.96 

  (0,27) (0,5) (-6,14) (-2,2) (-1,-0.9) 
a
 The average difference in a biorefinery characteristic is calculated by taking the average of the difference 

between the alternative model result and baseline model result across all biorefineries [i.e., Average difference 

in characteristic = 
 

   
∑ (                                      )       ]. That is, we calculate the average of 

the differences as opposed to the difference of the averages. Appendix Table C.4.2 provides analogous results 

for the 10 biorefinery locations with the lowest biofuel production cost per gallon.
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Table C.4.2 – Average difference in cost-minimizing decisions between alternative assumptions 

and baseline results for the 10 least-cost locations 
(10 least-cost locations only) 

 
QT – QT,base        

    

  
 C 

 (bgy) (mgy) (miles)  ($/dt) ($/gallon) 

Low YB (60% Khanna et al.) -0.2 -16 1 -2% 2 0.21 

High YB (100% Khanna et al.)  0.2 23 -1 1% -2 -0.22 

Low dA (60% willing to consider) -0.3 -31 3 -1% 0 0.08 

High dA (50% permanent past) 0.2 17 -1 -1% 0 -0.03 

Low t  (t = 0.50) 0.6 63 8 -1% 0 -0.10 

High t  (t = 1.00) -0.4 -40 -6 -1% 0 0.11 

Low k  (k = 0.60) 0.5 54 7 1% 0 -0.07 

High k (k = 0.90)  -0.8 -78 -15 -3% 0 0.01 

Fast Pyrolysis  0.2 24 3 -1% 0 -0.90 
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Table C.4.3 – Summary statistics of cost-minimizing biorefinery decisions under alternative biomass transportation models 

     
   @ 

radius 

   @ ½ 

radius 

   @ 

plant 

    

  
      

 (mgy) (miles)    ($/dt) ($/gallon)  

All biorefineries (182) - Average         

Baseline 52 35 90.7% -- -- 18.6 3.73 9.4 

Diminishing participation  55 37 70% 96% 99% 16.8 3.71 10 

Average hauling distance 62 38 90% -- -- 18.5 3.67 11.3 

All biorefineries (182) - Range         

Baseline 9 – 117 22 – 51 47 – 100% -- -- 4 – 58 3.19 – 4.57 -- 

Diminishing participation 9 – 131 22 – 55 29 – 93%  66 – 100% 84 – 100% 4 – 53 3.18 – 4.52 -- 

Average hauling distance 9 – 144 22 – 52 46 – 100% -- -- 4 – 58 3.14 – 4.51 -- 

Top 25% of biorefineries (average)         

Baseline 86 31 96 % -- -- 12.3 3.38 41% 

Diminishing participation 90 32 76% 99% 100% 11 3.37 41% 

Average hauling distance 107 35 95.3% -- -- 12.2 3.33 42% 

Bottom 25% of biorefineries (average)         

Baseline 31 38 80% -- -- 31 4.17 15% 

Diminishing participation 33 40 57% 88% 97% 28 4.13 15% 

Average hauling distance 35 41 79% -- -- 31 4.10 14% 
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Appendix C.5 – Sensitivity of model results to land use constraint 

Baseline results assume a fixed amount of land is available for biomass production (dA) at 

heterogeneous opportunity costs as proxied by offers to enroll in the CRP. In the following, we 

consider two potential deviations from the land assumptions in the baseline model.  

Pastureland only option 

If pastureland is available at a lower opportunity cost relative to marginal cropland (i.e., 

rental pasture rate below CRP payments), a biorefinery located in an area with enough pasture land 

may find it cost-efficient to offer a high enough biomass price to incentivize pastureland into 

switchgrass production but not high enough to compete with cropland acreage. To evaluate the 

impacts on the estimated supply curve when pastureland has a different opportunity cost than 

marginal cropland, we make the following assumptions:  

 Baseline acreage from pastureland (25%) and cropland pasture (25%) is available at an 

opportunity cost equal to the CRD average pasture rental rate. Landowners are assumed 

to require a 15% premium above the pasture rental rate to convert pasture to dedicated 

switchgrass production.
152

 

 Remaining baseline acreage, that is, 25% of CRP acreage and failed cropland and 10% of 

harvested cropland, is available at heterogeneous opportunity costs as proxied by the 

CRP offers data. 

 All biomass suppliers in a CRD receive the same price for biomass.  

Figure C.5.1 compares the estimated supply curve from the baseline results to the estimated 

supply curve when biorefineries face different opportunity costs for pastureland and marginal 

cropland. With lower pasture rental rates relative to CRP bid rates, 83 out of the 182 CRDs utilize 

only pastureland for switchgrass production. The least cost ethanol ($3.10 per gallon) is produced at a 

114 mgy biorefinery located in northeast Texas which procures switchgrass grown on pastureland 

only. Relative to the baseline results, the allocation of less land for biomass leads to smaller capacity 

biorefineries (-7 mgy) and lower cumulative capacity (-1.2 bgy). 

                                                      
152

 The assumption of a 15% premium follows from de la Torre Ugarte, Walsh, Shapouri, & Slinsky (2003). 
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Figure C.5.1 – Estimated supply curves from baseline results and pastureland only option 
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Without data on switchgrass land use, we use empirical estimates of land use own-

price/return elasticities (Table C.5.1) to proxy for the own-price elasticity of switchgrass acreage 

(        
), or the increase in acreage supplied for switchgrass production from an increase in the price 

of switchgrass. Estimates for the price elasticity of cropland range between 0.011 and 0.5 and 

pastureland elasticities range between 0.09 and 0.45. The highest elasticity reported in Table C.5.1 is 

0.95 estimated by Miller & Plantinga (1999) for corn and soybean acreage. Based on the values 

estimated in the literature, agricultural land use is relatively price inelastic.  

Table C.5.1 – Empirical estimates of land use own-price/return elasticities 

Crop/land use Own price/return  

elasticity 

Source 

Corn    

 0.014 Arnade & Kelch (2007) 

 0.15 Chavas & Holt (1990) 

 0.1 Chembezi & Womack (1992) 

 0.05 Lee & Helmberger (1985) 

 0.17-0.35 Lin & Dismukes (2007) 

 0.95 Miller & Plantinga (1999) 

 0.05 Orazem and Miranowski (1994) 

 0.2 Tegene, Huffman, & Miranowski (1988) 

 0.51 Huang & Khanna (2010) 

Cropland   

 0.05-0.41 Ahmed et al. (2008) 

 0.5 GTAP (2010) 

 0.011-0.192 Lubowski et al. (2006) 

 0.09-0.183 Lubowski et al. (2006) – from pasture 

Pasture   

 0.26 Gallagher & Shapouri (2008) 

 0.23-0.45 Ahmed et al. (2008) 

 (N.S.) Lubowski et al. (2006) 

 0.09-0.183 Lubowski et al. (2006) – from cropland 

Soybeans   

 0.95 Miller & Plantinga (1999) 

 0.45 Chavas & Holt (1990) 

 0.25 Lee & Helmberger (1985) 

 0.3 Lin & Dismukes (2007) 

 0.25 Orazem & Miranowski (1994) 

 0.487 Huang & Khanna (2010) 

Wheat   

 0.05 Chembezi & Womack (1992) 

 0.25-0.34 Lin & Dismukes (2007) 

 0.35 Morzuch et al. (1980) 

 0.067 Huang & Khanna (2010) 
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Removing the land use constraint has minimal impact on the estimated supply curve for the 

range of own-return land use elasticities reported in Table C.5.1 (see Figure C.5.2). In particular, the 

estimated supply curve is unchanged when the price elasticity of switchgrass acreage is set at the 

highest pastureland elasticity found within the literature (i.e.,         
= 0.45). The cost to incentivize 

more land to move into switchgrass production outweighs benefits from increased biomass density. 

Figure C.5.2 shows that the option to convert additional land beyond the baseline acreage into 

switchgrass only impacts model results for elasticities of switchgrass acreage significantly higher than 

the values reported in Table C.5.1. 

Figure C.5.2 - Estimated supply curves from baseline results and additional land option 
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